Teachers Day at the Particle Accelerator Conference in 2005

The Spallation Neutron Source

N.R. Holtkamp

Oak Ridge National Laboratory Accelerator Systems Division Director for the SNS

Mai 18th, 2005 Knoxville, TN

Materials define the ages of civilization

SPALLATION NEUTRON SOURCE

- Stone Age Bronze Age Iron Age
- The modern era has seen iron advance to steel
 - Achieved by trial and error starting with Excalibur
- More recently we've moved to silicon
- All of these are actually relatively "simple" materials
 - Increasingly we are trying to master very complex materials
 - Polymers
 - Proteins
 - Nanomaterials
 - Superconductors
- Understanding complicated materials requires sophisticated scientific tools

Structure determines properties

Three forms of carbon – very different materials

Neutrons and neutron sources Continued

Electricity and Magnetism

- Electrons have a negative charge
- Protons have a positive charge
- Neutrons have no charge

- •Opposite charges attract
- •Like charges repel

Rutherford, 1912

Moving charges, currents, and electromagnets

- If charges move they represent a current
- Currents can transport energy
- Currents can produce magnetic fields
- Magnetic fields can change the direction of moving charges

Force and Acceleration: Electric Fields

• An electric field will impose a force on charge, and the charge will be accelerated along the direction of the force !!!

Force and Acceleration: Magnetic Fields

- In a magnetic field a moving charge will be accelerated perpendicular:
 - To the direction of motion
 - To the direction of the magnetic field

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

SPALLATIO

Charged Particle

The Simplest DC Electron Accelerator at Home

Inside the ion source the antenna couples RF power into a low pressure (~10⁻⁵ atm) hydrogen gas. The partially ionized gas (plasma) glows like a fluorescence light.

LEB

Ion Source

Low energy ions, electrons,

atoms, and exited molecules drift through a magnetic field towards the exit aperture where some of them form negative Hydrogen ions.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MEBT

How do we accelerate many charged particles???

- SNS:
 - $-1000 \times 1000 \times 10 \times 100 \text{ V} = 1000 \times 1\text{Million Volt (MV)}$
 - 1 Giga Volt

We could use 1 GV DC Voltage??

Or we could be smarter

- Riding on a wave is acceleration
- Will show later how we do that !!!

The Spallation Neutron Source Partnership

A Sense of Scale

 Next thing: Get a feeling for time or scale or is it the same?: Or why do we built SNS

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

History of the Universe

Structure Determines Properties

3 forms of Carbon - very different materials

Superconductors or organic ferromagnets

Neutrons see the Nuclei

SPALLATION N

Neutrons see the Nuclei SPALLATION NEUTRON SOU Prem KÉRALO Premium Motor Oil Mobil l'Iultic SENSITIV DERMO-HAARBAD HOOMETE VERTEAGUCHERT fotor DEBMATOLOGISCH GETISTIT Plast RECHERCHE AVANCES LOREAL

Better performance of complex fluids.

Biology and Neutron Scattering: >95 % of the Body is Water!

- The Human genome project will tell you what sequence the DNA's represent
- Neutron and X-Ray scattering will tell
 how they function
- Neutrons are very good, because they are sensitive to hydrogen
- New medicine will be developed

How does it work?

Spallation-Evaporation Production of Neutrons and Why to use heavy metal target

Fission

- chain reaction
- continuous flow
- 1 neutron/fission

Spallation

- no chain reaction
- pulsed operation
- 30 neutrons/proton

Why a pulsed source?

- Arrival time of neutrons at a sample is directly related to the energy (and wavelength) of the neutrons
 - Can either use this information to get spectral information, or filter out most of the signal to gather data at a particular wavelength
- Create separation in arrival time, i.e. energy or wavelength resolution, by extending length of neutron beam line

SNS will be World-Class! (being the best...)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

IT-BATTELLE

RF Acceleration for the SNS

How to efficiently accelerator H⁻ ions / charged particles?

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

SPALLATION NE

Drift Tube Linac

Coupled-Cavity Linac

Major Components of the SNS High Power RF System

- Radio frequency is the heart of the accelerator
- So how do we make it (or: what happens in a microwave oven?)

High-Power RF Installation

 High-Power RF System (klystrons, waveguide, power supplies, ...) supplied by LANL

Superconductivty

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Current 0

SPALLATION NEUTRON

Current on, Resistance very low, After cooled down

Cavity Preparation

Medium Beta Cryomodule Internal Structure

Thermal shield at 50 K

Status of Superconducting Linac

- SCL accelerates beam from 187 to 1000 MeV
- Jefferson Lab is building 23 cryomodules with 81 SC cavities

The SNS Storage Ring

RTBT Installation Progress

RTBT/Target Interface

Section through RTBT/Target Flight-tube Interface

Target Region Within Core Vessel

Target Service Bay Installation

Target is transitioning from civil construction to installation

GC installation of target systems

Outer Reflector Plug in place – Jan. 05

in Target Service Bay completed

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

in Jan. 05

Seventeen instruments now formally approved

SNS Contact

- For more information about the Spallation Neutron Source Project,
 - Use the SNS public web-site address: <u>http://www.sns.gov/</u>
 - Email: snsprojectoffice@sns.gov