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• QCD is not conformal;  however, it has 
manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• Conformal window:

• Use mathematical mapping of the conformal 
group  SO(4,2) to AdS5 space

Map AdS5 X S5 to conformal N=4 SUSY

2

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.
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FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U) + m0
|χp,β〉

〉
.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM −1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Schwinger-Dyson

lattice: Furui, Nakajima (MILC)

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.
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Shirkov
Gribov

Dokshitser
Siminov
Maxwell
Cornwall

log10 Q2(GeV2)

Φ(z) = z3/2φ(z)

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

αs(Q2)

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

Conformal window 
 Infrared  fixed-point

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′
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IR Fixed-Point for QCD?

• Dyson-Schwinger Analysis:    QCD Coupling has IR Fixed Point                                      
Alkofer, Fischer, von Smekal et al.

• Evidence from Lattice Gauge Theory  Furui, Nakajima

• Define coupling from observable: indications of IR 
fixed point for QCD effective charges

• Confined or massive gluons: Decoupling of QCD vacuum 
polarization at small Q2  

• Justifies application of AdS/CFT in strong-coupling 
conformal window

4

Serber-Uehling

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]
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FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Constituent Counting Rules

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

5

Conformal symmetry and PQCD predict  leading-twist 
scaling behavior of  fixed-CM angle exclusive amplitudes

Characteristic scale of QCD: 300 MeV

Many new  J-PARC, GSI, J-Lab, Belle, Babar tests

Farrar & sjb; Matveev, Muradyan, 
Tavkhelidze

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0
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[33]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

 Leading-Twist  PQCD Factorization  for 
form factors, exclusive amplitudes
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(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

!(ep→ eX) " #
q

e2q Inclusive, DIS

(13)

!(ep→ ep) " (#
q

eq)
2 Exclusive, form factor

! !

"

!#$

!"#$%&'()

% *+,-.

&

/0#$%&'()

! !

" "

#$ !

% *+12

FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable $ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.

Lepage, sjb

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

High Q2 from short distances

Fπ(Q2)

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

If αs(Q̃2) " constant

High Q2 from short distances

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

baryon distributio! 
amplitud"
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Features of  Hard Exclusive 
Processes in PQCD 

• Factorization of  perturbative hard scattering subprocess 
amplitude and nonperturbative distribution amplitudes

• Dimensional counting rules  reflect conformal invariance:

• Hadron helicity conservation:

• Color transparency   Mueller, sjb;

• Hidden color        Ji, Lepage, sjb;

• Evolution of Distribution Amplitudes

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

Lepage, sjb; Efremov, Radyushkin
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FIG. 3: Pion form factor as extracted in this work. Also
shown are e−π elastic data from CERN, and earlier pion elec-
troproduction data from DESY and Jefferson Lab. The ear-
lier Jefferson Lab data are taken from reference [9]. The data
point at Q2 = 1.60 GeV2 from [9] has been shifted from its
central value for visual representation. The curves are from a
Dyson-Schwinger equation (solid, [17]), QCD sum rules (dot-
ted, [14]), dispersion relations with QCD constraint (dashed,
[15]), and from a pQCD calculation (dashed-dotted, [18]).

inance the longitudinal π−/π+ ratios in 2H were exam-
ined. Since the pole term is purely isovector this ratio is
expected to be close to unity and a significant deviation
from unity would indicate the presence of an isoscalar
background. The preliminary analysis of the longitudi-
nal π−/π+ ratios is consistent with unity.

In Figure 3, our results are shown along with re-
sults from CERN, DESY, earlier Jefferson Lab data, and
some representative calculations. Comparing the result
at Q2 = 1.60 GeV2 to the earlier Jefferson Lab data
point at a lower value of W allows for a direct test of the
theoretical model dependence. A higher value of W al-
lows for a measurement at smaller values of −t, at closer
proximity to the pion pole. The data are consistent with
the previous Jefferson Lab Fπ measurement at a value of
Q2 = 1.60 GeV2 and suggest a small model uncertainty
due to fitting the VGL model to the data. The data in-
dicate a one sigma deviation from a monopole form fac-
tor that yields the measured charge radius. That form
factor is up to Q2=2.5 GeV2 indistinguishable from the
solid curve in Figure 3. Various models provide a good
description of the measured values for Fπ up to Q2=1.60
GeV2. The data are well described by the calculation of
Nesterenko and Radyushkin [14], in which a QCD sum
rule framework for the soft contribution to Fπ as well as
an asymptotically dominant hard gluon exchange term
is used. The dispersion relation calculation by Geshken-

bein [15] also agrees well with the data. The data are
also reasonably well described by the Dyson-Schwinger
calculation by Maris and Tandy, which is based on the
Bethe-Salpeter equation with dressed quark and gluon
propagators. All parameters in the latter calculation are
determined without the use of Fπ data [16, 17]. Perturba-
tive QCD calculations of which one is shown in Figure 3
give values of Q2Fπ around 0.10 GeV2 in the region of
our measurements.

In summary, we have measured separated 1H(e,e′π+)n
cross sections at values of Q2=1.60 and 2.45 GeV2 at
W=2.22 GeV. The charged pion form factor was ex-
tracted from the separated longitudinal cross section us-
ing a Regge model. The data are consistent with the
previous Jefferson Lab result at Q2 = 1.60 GeV2. The
data deviate by one sigma from a monopole form factor
obeying the measured charge radius, but are still far from
the values expected from pQCD calculations.

This work was supported in part by the U.S. Depart-
ment of Energy. The Southeastern Universities Research
Association (SURA) operates the Thomas Jefferson Na-
tional Accelerator Facility for the United States Depart-
ment of Energy under contract DE-AC05-84150. We ac-
knowledge additional research grants from the U.S. Na-
tional Science Foundation, the Natural Sciences and En-
gineering Research Council of Canada (NSERC), NATO,
and FOM (Netherlands).
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• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

(Brodsky and Farrar, Phys. Rev. Lett. 31, 1153 (1973); Matveev et al., Lett. Nuovo Cim. 7, 719 (1973)).
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G. Huber

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L
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FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.
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Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance 

Constituent counting rules
Farrar, sjb; Muradyan, Matveev, Taveklidze

No sign of running coupling

9
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Fig. 20 

s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7
Conformal Invariance:

10
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Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

powern = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

Best Fit  

cm2

GeV2

Reflects
underlying 
conformal 
scale-free 

interactions

11
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Deuteron Photodisintegratio! 

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s11dσdt (γd→ np) = F(θCM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Reflects conformal invariance 

J-Lab

12



 
 Stan Brodsky,  SLACAdS/QCDAPS Jacksonville

April 16, 2007

• PQCD predicts log corrections from powers of αs, 
logs, pinch contributions  Lepage, sjb; Efremov, 
Radyushkin; Landshoff; Mueller, Duncan

• DSE: QCD coupling  (mom scheme) has IR Fixed 
point       Alkofer, Fischer, von Smekal et al.

• Lattice  results show similar flat behavior

• PQCD exclusive amplitudes dominated by 
integration regime where αs   is large and flat

Why do dimensional counting 
rules work so well?

Furui, Nakajima

13



 

• Use AdS/CFT to provide an 
approximate, covariant, and 
analytic model of hadron structure 
with confinement at large 
distances, conformal behavior at 
short distances

• Analogous to the Schrodinger 
Equation for Atomic Physics

• AdS/QCD Holographic Model

Goal:



 

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

1
s−M2+iMΓ

q2 → q2 + iε→ q2 + iMΓ

Fix Γ from height

Γρ = 111 MeV

Conformal Theories are invariant under the 
Poincare and conformal transformations with  

the generators of SO(4,2)

SO(4,2)  has a mathematical representation on AdS5
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AdS/QCD G. F. de Téramond

5-Dimensional
Anti-de Sitter

Spacetime

4-Dimensional
Flat Spacetime

(hologram)

Black Hole

1-2006
8685A7

z0 = 1/ΛQCD

z

Caltech High Energy Seminar, Feb 6, 2006 Page 3
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Truncated AdS Space
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April 16, 2007 AdS/QCD

• Polchinski & Strassler: AdS/CFT  builds in conformal symmetry at 
short distances; counting rules for form factors and hard exclusive 
processes; non-perturbative derivation

• Goal: Use AdS/CFT to provide an approximate model of hadron 
structure with confinement at large distances, conformal behavior 
at short distances

• de Teramond, sjb:  AdS/QCD Holographic Model: Initial “semi-
classical” approximation to QCD.  Predict light-quark hadron 
spectroscopy,  form factors.

• Karch, Katz, Son, Stephanov: Linear Confinement

• Mapping of AdS amplitudes to 3+ 1 Light-Front equations, 
wavefunctions

• Use AdS/CFT wavefunctions as expansion basis for diagonalizing 
HLFQCD ; variational methods

17
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ηµνdxµdxν − dz2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 1118

invariant measure



 Stan Brodsky,  SLACAPS Jacksonville
April 16, 2007 AdS/QCD

• Use mapping of conformal group SO(4,2) to AdS5

• Scale Transformations represented by wavefunction  
in 5th dimension

• Holographic model: Confinement at large distances 
and conformal symmetry in interior

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Truncated space simulates “bag” boundary conditions

Guy de Teramond
SJB 

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

ψ(z0) = 0

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

AdS/CFT

19



 
 Stan Brodsky,  SLACAdS/QCDAPS Jacksonville

April 16, 2007

AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD.

• Normalizable AdS modes Φ(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

0

2

4

z

Φ(z)

3-2006
8721A13

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.
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Confinement 
in the 5th 

dimension
z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

Twist dimension 
of baryon

z0 = 1
ΛQCD

z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

de Teramond, sjb

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

Identify hadron by its interpolating operator at z  -- > 0

20
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AdS Schrodinger Equation for bound state 
of  two scalar constituents

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

Φ(z) = z3/2φ(z)

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Derived from variation of Action in AdS5

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

Truncated space

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

the generators of S

Alternative: Harmonic osci#ator  confinemen%

Karch, et al.
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD

• Normalizable AdS modes Φ(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

-4

0

2

4

z

Φ(z)

2-2006
8721A8

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.
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z∆

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

z∆

z0

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

z∆

z0 = 1
ΛQCD

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Match fall-off at small z to conformal twist dimension 
at short distances
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Guy de Teramond
SJB 

AdS/QCD G. F. de Téramond

0

2

4

(G
e
V

2
)

(a) (b)

0 2 40 2 4
1-2006
8694A12

ω (782)
ρ (770) π (140)

b1 (1235)

π2 (1670)
a0 (1450)
a2 (1320)
f1 (1285)

f2 (1270)
a1 (1260)

ρ (1700)
ρ3 (1690)

ω3 (1670)
ω (1650)

f4 (2050)
a4 (2040)

Fig: Light meson orbital spectrum ΛQCD = 0.32 GeV

Caltech High Energy Seminar, Feb 6, 2006 Page 20

AdS/QCD G. F. de Téramond
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Fig: Light meson orbital spectrum ΛQCD = 0.32 GeV
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Baryon Spectrum

• For spin-carrying constituents: ∆→ τ = ∆− σ, σ =
∑n

i=1 σi.

• For a three quark state ∆ → ∆ − 3/2. Change compensated in µ by the shift k → L − 1 and
Ψ(z)→ z−

1
2 Ψ(z).

• Three-quark baryon described by wave equation (d = 4, κ = 0)[
z2 ∂2

z − 3z ∂z + z2M2 − L2
± + 4

]
f±(z) = 0

with L+ = L + 1, L− = L + 2, and solution

Ψ(x, z) = Ce−iP ·xz2
[
J1+L(zM) u+(P ) + J2+L(zM) u−(P )

]
.

• 4-d mass spectrumΨ(x, zo)± = 0 =⇒ parallel Regge trajectories for baryons !

M+
α,k = βα,kΛQCD, M−

α,k = βα+1,kΛQCD.

• Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

CAQCD, Minneapolis, May 11-14, 2006 Page 19

Baryon Spectrum

Wave Equation :

Spinor AdS Fields

• Baryon: twist-three, dimension ∆ = 9
2 + L

O 9
2+L = ψD{!1 . . . D!qψD!q+1 . . .D!m}ψ, L =

m∑
i=1

"i.

• Solve full 10-dim Dirac Eq., /DΨ̂ = 0, since baryons are charged under SU(4) ∼ SO(6).
Baryon number conservation?

• Ψ̂ is expanded in terms of eigenfunctions ηκ(y) of the Dirac operator on compact space X

with eigenvalues λκ:

Ψ̂(x, z, y) =
∑

κ

Ψκ(x, z)ηκ(y).

• From the 10-dim Dirac equation, /DΨ̂ = 0:[
z2 ∂2

z − d z ∂z + z2M2 − (λκ + µ)2R2 +
d

2

(
d

2
+ 1

)
+ (λκ + µ)R Γ̂

]
f(z) = 0,

i /DXη(y) = λ η(y),

whereΨ(x, z) = e−iP ·x f(z), PµPµ =M2 and Γ̂u± = ±u± ( For d = 4, Γ̂ = γ5).

CAQCD, Minneapolis, May 11-14, 2006 Page 17
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Guy de Teramond
SJB 

Only one 
parameter! 

Entire light 
quark baryon 

spectrum

Prediction from  
AdS/QCDAdS/QCD G. F. de Téramond

I = 1/2 I = 3/2

0 2
L

4 60 2
L

4 6

2

0

4

6

8

N (939)

N (1520)

N (2220)N (1535)

N (1650)

N (1675)

N (1700)

N (1680)

N (1720)

N (2190)

N (2250)

N (2600)

! (1232)

! (1620)

! (1905)

! (2420)

! (1700)

! (1910)

! (1920)

! (1950)

(b)(a)

(G
e
V

2
)

! (1930)

56

70

1-2006
8694A14 

Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• SU(6) multiplet structure for N and ∆ orbital states, including internal spin S and L.

SU(6) S L Baryon State

56 1
2 0 N 1

2
+(939)

3
2 0 ∆ 3

2
+(1232)

70 1
2 1 N 1

2
−(1535) N 3

2
−(1520)

3
2 1 N 1

2
−(1650) N 3

2
−(1700) N 5

2
−(1675)

1
2 1 ∆ 1

2
−(1620) ∆ 3

2
−(1700)

56 1
2 2 N 3

2
+(1720) N 5

2
+(1680)

3
2 2 ∆ 1

2
+(1910) ∆ 3

2
+(1920) ∆ 5

2
+(1905) ∆ 7

2
+(1950)

70 1
2 3 N 5

2
− N 7

2
−

3
2 3 N 3

2
− N 5

2
− N 7

2
−(2190) N 9

2
−(2250)

1
2 3 ∆ 5

2
−(1930) ∆ 7

2
−

56 1
2 4 N 7

2
+ N 9

2
+(2220)

3
2 4 ∆ 5

2
+ ∆ 7

2
+ ∆ 9

2
+ ∆ 11

2
+(2420)

70 1
2 5 N 9

2
− N 11

2
−

3
2 5 N 7

2
− N 9

2
− N 11

2
−(2600) N 13

2
−

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 19
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

27

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2

A
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Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Truncated Space Confinement

Harmonic Oscillator Confinement

One parameter -  set by pion decay constan"

Data Compilation from Baldini, Kloe and Volmer

G. de Teramond, sjb 
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Holographic Pion Form Factor

SJB and GdT

09/13/2006

1 The Pion Form Factor in the Gaussian Model

The form factor in AdS is the overlap of the normalizable modes dual to the incoming

and outgoing hadrons ΦP and ΦP ′ with the non-normalizable mode J(Q, z) dual to

the external source

F (Q2) = R3

∫ ∞

0

dz

z3
ΦP ′(z)J(Q, z)ΦP (z). (1)

The pion string mode Φ in the Gaussian model is

Φ(z) =

√
2κ

R3/2
z2e−κ2z2/2. (2)

In the interaction picture, where we neglect confinement of qq virtual pairs in the

electromagnetic current as it propagates inside the AdS cavity, J(Q, z) is the solution

of a vector AdS wave equation

J(Q, z) = zQK1(zQ). (3)

The form factor (1) has a closed form solution

F (Q2) = 1 +
Q2

4κ2
exp

(
Q2

4κ2

)
Ei

(
− Q2

4κ2

)
, (4)

where Ei is the exponential integral

Ei(−x) =

∫ x

∞
e−t dt

t
. (5)

For large transverse momentum Q2 we use the the asymptotic expansion of Ei(−x)

−Ei(−x) =
e−x

x

(
1− 1

x
+

2!

x2
+ . . .

)
. (6)

Holographic Pion Form Factor

SJB and GdT

09/13/2006

1 The Pion Form Factor in the Gaussian Model

The form factor in AdS is the overlap of the normalizable modes dual to the incoming

and outgoing hadrons ΦP and ΦP ′ with the non-normalizable mode J(Q, z) dual to

the external source

F (Q2) = R3

∫ ∞

0

dz

z3
ΦP ′(z)J(Q, z)ΦP (z). (1)

The pion string mode Φ in the Gaussian model is

Φ(z) =

√
2κ

R3/2
z2e−κ2z2/2. (2)

In the interaction picture, where we neglect confinement of qq virtual pairs in the

electromagnetic current as it propagates inside the AdS cavity, J(Q, z) is the solution

of a vector AdS wave equation

J(Q, z) = zQK1(zQ). (3)

The form factor (1) has a closed form solution

F (Q2) = 1 +
Q2

4κ2
exp

(
Q2

4κ2

)
Ei

(
− Q2

4κ2

)
, (4)

where Ei is the exponential integral

Ei(−x) =

∫ x

∞
e−t dt

t
. (5)

For large transverse momentum Q2 we use the the asymptotic expansion of Ei(−x)

−Ei(−x) =
e−x

x

(
1− 1

x
+

2!

x2
+ . . .

)
. (6)
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Figure 1: Space-like pion form factor in a holographic AdS Gaussian-modified-metric

model for κ = 0.4 GeV (red curve). The blue curve corresponds to the truncated

space holographic model for ΛQCD = 0.2 GeV.

We find at large Q2

F (Q2)→ 4κ2

Q2
, (7)

and we recover the dimensional counting rule! It is remarkable that even if the

hadronic mode (2) is Gaussian, its leads to hard power behavior for the form factor

at large momentum transfer.

We show in Figure 1 the behavior of the spacelike pion form factor in the Gaussian

model (red curve). The results are almost indistinguishable from the hard wall model

results (blue curve).

2 Mapping to QCD LFWF

From the holographic mapping to LFWF∣∣∣ψ̃(x, ζ)
∣∣∣2 =

R3

2π
x(1− x)

|Φ(ζ)|2
ζ4

,

we find the pion LFWF in the Gaussian-modified model

ψ̃qq/π(x,%b⊥) =
κ√
π

√
x(1− x) e−

1
2κ2x(1−x)#b2⊥ . (8)
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Identical Results  for both 
confinement models
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2

L

κ = 2ΛQCD

V = −βκ2ζ

M2(GeV2)

K+

p

g

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

M2(GeV2)
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Spacelike and Timelike Pion form factor from AdS/CFT

G. de Teramond, sjb 
Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Harmonic 
Oscillator 

Confinement 
scale set by pion 
decay constantlnFπ(q2)

κ = 0.364 GeV

κ = 0.424 GeV

τ = t + z/c

φ(x, Q0) ≡
∫ Q0 d2k⊥ψ(x,&k⊥) ∝ fM

√
x(1− x)

φM(x) ≡ ∫
d2k⊥ψM(x,&k⊥) ∝ fM

√
x(1− x)

Log H » Fp  Hq2L »L k = 0.38
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lnFπ(q2)

κ = 0.364 GeV
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κ = 0.38 GeV

τ = t + z/c

φ(x, Q0) ≡
∫ Q0 d2k⊥ψ(x,&k⊥) ∝ fM

√
x(1− x)

φM(x) ≡ ∫
d2k⊥ψM(x,&k⊥) ∝ fM

√
x(1− x)
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Baryon Form Factors

• Coupling of the extended AdS mode with an external gauge field Aµ(x, z)

ig5

∫
d4x dz

√
g Aµ(x, z) Ψ(x, z)γµΨ(x, z),

where

Ψ(x, z) = e−iP ·x [ψ+(z)u+(P ) + ψ−(z)u−(P )] ,

ψ+(z) = Cz2J1(zM), ψ−(z) = Cz2J2(zM),

and

u(P )± =
1± γ5

2
u(P ).

• In the large P+ limit

ψ+(z) ≡ ψ↑(z), ψ−(z) ≡ ψ↓(z),

the LC± spin projection along ẑ.

• Constant C determined by charge normalization:

C =
√

2ΛQCD

R3/2 [−J0(β1,1)J2(β1,1)]1/2
.

CAQCD, Minneapolis, May 11-14, 2006 Page 2631
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AdS/QCD G. F. de Téramond

• Consider the spin non-flip form factors in the infinite wall approximation

F+(Q2) = g+R3
∫

dz

z3
J(Q, z) |ψ+(z)|2,

F−(Q2) = g−R3
∫

dz

z3
J(Q, z) |ψ−(z)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(z) and ψ−(z) correspond
to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) = R3

∫
dz

z3
J(Q, z)|ψ+(z)|2,

Fn
1 (Q2) = −1

3
R3

∫
dz

z3
J(Q, z)

[|ψ+(z)|2 − |ψ−(z)|2] ,

where F p
1 (0) = 1, Fn

1 (0) = 0.

• LargeQ power scaling: F1(Q2)→ [
1/Q2

]2
.

Caltech High Energy Seminar, Feb 6, 2006 Page 31

Nucleon Form Factors 
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F2(Q2)

Q2(GeV2)

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j
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Fp
2(Q2)

Fp
1(Q2)

Q2(GeV2)

Harmonic Oscillator Confinement

κ = 0.454 GeV

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F1(Q2)I→F =
∫ dz

z3Φ
↑
F (z)J(Q, z)Φ↑I(z)

F2(Q2)I→F =
∫ dz

z2Φ
↑
F (z)J(Q, z)Φ↓I(z)

Harmonic Osci#ator Confinemen"

Truncated Space Confinement

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F1(Q2)I→F =
∫ dz

z3Φ
↑
F (z)J(Q, z)Φ↑I(z)

F2(Q2)I→F =
∫ dz

z2Φ
↑
F (z)J(Q, z)Φ↓I(z)

Λ = 0.2 GeV

G. de Teramond, sjb 
Preliminary

Current modified 
by metric 

lnFπ(q2)

κ = 0.364 GeV

κ = 0.424 GeV

τ = t + z/c

φ(x, Q0) ≡
∫ Q0 d2k⊥ψ(x,&k⊥) ∝ fM

√
x(1− x)

φM(x) ≡ ∫
d2k⊥ψM(x,&k⊥) ∝ fM

√
x(1− x)
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Dirac Neutron Form Factor

(Valence Approximation)

Q4Fn
1 (Q2) [GeV4]
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-0.35
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-0.05

0

Q2 [GeV2]

Prediction for Q4Fn
1 (Q2) for ΛQCD = 0.21 GeV in the hard wall approximation. Data analysis from

Diehl (2005).

CAQCD, Minneapolis, May 11-14, 2006 Page 2934

Truncated Space Confinement
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Dirac’s Amazing  Idea:
The  “Front Form”

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

35

Evolve in 
ordinary time
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1Remarkable new insights from AdS/CFT, the duality between    
conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ
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ψ(x,k⊥)

HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c
Light-Front Wavefunctions

Intrinsic gluons, sea quarks, asymmetries

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1

n
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i(k1 ∂
∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
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〉 → ∣∣+ 1
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−1 +1

Conserved 
LF Fock state by Fock State
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.
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2
λf, the boson
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contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator
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∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
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〉 → ∣∣+ 1
2
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

A+=0 gauge: No unphysical degrees of freedom

Nonzero Anomalous Moment requires
Nonzero orbital angular momentu&
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑
a

∫
[dx][d2k⊥]

∑
j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)− 1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡ ∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]
16π3δ

(
1−

n∑
i=1

xi

)
δ(2)

(
n∑

i=1

k⊥i

)
, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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6

Drell, sjb
A(σ,∆⊥) = 1

2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

40
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AdS/QCD G. F. de Téramond

Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
∑

q

eq

∫ 1

0
dx

∫
d2!k⊥
16π3

ψ∗P ′(x,!k⊥ − x!q⊥) ψP (x,!k⊥).

• Fourrier transform to impact parameter space!b⊥

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ ei!b⊥·!k⊥ψ̃(x,!b⊥)

• Find (b = |!b⊥|) :

F (q2) =
∫ 1

0
dx

∫
d2!b⊥ eix!b⊥·!q⊥∣∣ψ̃(x, b)

∣∣2
= 2π

∫ 1

0
dx

∫ ∞

0
b db J0 (bqx)

∣∣ψ̃(x, b)
∣∣2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33

Soper

41

Light-Front Representation of  Meson Form Factor
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AdS/QCD G. F. de Téramond

• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x,"b⊥) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0

(√
x(1− x)|"b⊥|β0,1ΛQCD

)
θ

(
"b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)

the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !

Caltech High Energy Seminar, Feb 6, 2006 Page 34

Identical DYW and AdS5 Formulae: Two parton cas"

42

Same result for 
LF and AdS5

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

43

Holography: Unique mapping derived from equality of LF 
and AdS  formula for current matrix elements
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)

00.5
1

1
2
3
4

5

0

2

4

0

00.5
1

1
2
3
4

5

1

2

0

FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic radial equation:

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent
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The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.
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0
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which is also the solution for the electromagnetic poten-
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sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
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Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
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. (14)

In the case of two partons ζ2 = x
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⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)
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x(1− x)|%b⊥|βL,kΛQCD

)
θ
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⊥ ≤
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where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
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The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Effective radial equation:

General solution:

G. de Teramond and sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R
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Figure 8: Asymptotic effective partonic density 2πρ(x, b⊥, Q → ∞) in terms of the
longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.
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Figure 9: LFWF ψ(x, b) for the truncated space model (left) and for the HO model
(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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Truncated Spac" Harmonic Osci#ator

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0
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AdS/QCD G. F. de Téramond
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Two-parton holographic LFWF in impact space ψ̃(x, ζ) for ΛQCD = 0.32 GeV: (a) ground state
L = 0, k = 1; (b) first orbital exited state L = 1, k = 1; (c) first radial exited state L = 0, k = 2.
The variable ζ is the holographic variable z = ζ = |b⊥|√x(1− x).

Caltech High Energy Seminar, Feb 6, 2006 Page 37

AdS/CFT Prediction for Meson LFWF

AdS/QCD G. F. de Téramond

• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x, ζ) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0 (ζβ0,1ΛQCD) θ

(
z ≤ Λ−1

QCD

)
the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !

Caltech High Energy Seminar, Feb 6, 2006 Page 36

G. de Teramond
SJB 
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AdS/QCD G. F. de Téramond

• Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

F (q2) =
∫ 1

0
dx

∫
d2!η⊥ei!η⊥·!q⊥ ρ̃(x, !η⊥)

• From DYW expression for the FF in transverse position space:

ρ̃(x, !η⊥) =
∑
n

n−1∏
j=1

∫
dxj d2!b⊥j δ(1− x−

n−1∑
j=1

xj) δ(2)(
n−1∑
j=1

xj
!b⊥j − !η⊥)|ψn(xj ,!b⊥j)|2

• Compare with the the form factor in AdS space for arbitrary Q:

F (Q2) = R3
∫ ∞

0

dz

z3
e3A(z)ΦP ′(z) J(Q, z) ΦP (z)

• Holographic variable z is expressed in terms of the average transverse separation distance of the

spectator constituents !η =
∑n−1

j=1 xj
!b⊥j

z =
√

x

1− x

∣∣ n−1∑
j=1

xj
!b⊥j

∣∣

Caltech High Energy Seminar, Feb 6, 2006 Page 3848
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator
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Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.

50

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2
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Key Ingredients in  E791 Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact

Brodsky Mueller
Frankfurt Miller Strikman

Diffraction, Rapidity gap

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q
51

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller,  sjb
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

53

Measure pion LFWF in diffractive dijet production 
Confirmation of color transparency 

Mueller, sjb; Bertsch et al; 
Frankfurt, Miller, Strikman

Conventional Glauber Theory Ruled Out 
! 

Factor of 7

Ashery E791 
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Key Ingredients in Ashery Experiment

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

 Gunion, Frankfurt, Mueller, Strikman, sjb
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THE kt DEPENDENCE OF DI-JETS YIELD
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Prediction from AdS/CFT: Meson LFWF
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)
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instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)

x
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FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(
1
2
mxBx

−)
(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡ qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect
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Features of Light-Front Formalism

• Hidden Color Nuclear Wavefunction

• Color Transparency, Opaqueness

• Intrinsic glue, sea quarks, intrinsic char%

• Simple proof of Factorization theorems for hard processes 
(Lepage, sjb)

• Direct mapping to AdS/CFT (de Teramond, sjb)

• New Effective LF Equations (de Teramond, sjb)

• Light-Front Amplitude Generator
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AdS/CFT and Integrability

• Conformal Symmetry plus Confinement: Reduce 
AdS/QCD Equations to Linear Form

• Generate  eigenvalues and eigenfunctions using 
Ladder Operators
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Schrodinger Equations
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where

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
− κ2ζ

)
, (66)

and its adjoint

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
, (67)

with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=
2ν + 1

ζ2
− 2κ2. (68)

Since the Hamiltonian is a bilinear form, its eigenvalues are positive definite.

Consequently

M2 ≥ 0 if ν2 ≥ 0. (69)

For ν2 < 0 we repeat the analysis of Sect. 2.5 to obtain the relation

〈φ ∣∣Hλ
LF

∣∣ φ〉 ≥ 2µ2

∫
dζ
|φ|2
ζ2

. (70)

Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2κ2(ν + 1) +M2

)
φν(ζ) = 0, (72)

follows from the eigenvalue equation (64). As in Sect. 2.2 we define the operator

b†ν = −iΠν . Thus

bν =
d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (73)

11
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2.10 Self-Adjoint Operators and Boundary Conditions

The adjoint A† of an operator A is defined by∫
dxφ∗A†χ =

∫
dx(Aφ)∗χ. (60)

For example (
d

dx

)†
= − d

dx
. (61)

Consider the expectation value of the kinetic energy operator T = − d2

dx2 in the

finite interval 0 ≤ x ≤ a∫ a

0

dxφ∗
(
− d2

dx2

)
φ =

∫
dx

∣∣∣∣dφ

dx

∣∣∣∣2 − [
φ∗dφ

dz

]a

0

. (62)

The operator T is self-adjoint or hermitian T = T † if φ or dφ
dx vanishes at x = 0 or

x = a. In an interval 0 ≤ x ≤ ∞ the wave function or its derivative must vanish at

infinity: φ(x)→ 0 or dφ(x)
dx → 0 as x→∞.

3 The Transverse Harmonic Oscillator Holographic

Model: Mesons

We consider a transverse oscillator model of holographic confinement where a ζ2 term

is added to the conformal effective potential. We write the effective Hamiltonian

Hν
LF (ζ) = − d2

dζ2
− 1− 4ν2

4ζ2
+ κ4ζ2 + 2(ν + 1)κ2, (63)

The constant term 2(ν + 1)κ2 is introduced so that the Hamiltonian is expressible

exactly as a product of operators. The spectrum of hadronic mass eigenstates is

determined by the eigenvalue equation

Hν
LF φν =M2

νφν . (64)

If ν2 > 0 the light-front Hamiltonian (63) can be expressed as

Hν
LF = Π†

νΠν , (65)
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Consequently
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dζ
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ζ2

. (70)

Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2κ2(ν + 1) +M2

)
φν(ζ) = 0, (72)

follows from the eigenvalue equation (64). As in Sect. 2.2 we define the operator

b†ν = −iΠν . Thus

bν =
d

dζ
+

ν + 1
2

ζ
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Bilinear

de Teramond, sjb

LF Hamiltonian

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12
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Ladder Operator
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12

with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12

with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12

with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12

In the ζ light-front coordinate representation

φL(ζ) = cL〈ζ|L〉 = 〈ζ|(b†)L|0〉 (93)

= CL

(
− d

dζ
+

1

2ζ
+ κ2z

)L

ζ1/2e−κ2ζ2/2, (94)

Thus

φL(ζ) = CLζ1/2+Le−κ2ζ2/2, (95)

with

CL = κ1+L

√
2

L!
(96)

The solutions φL are eigenfunctions of the light-front equation [1][
− d2

dζ2
− 1− L2

4ζ2
+ κ4ζ2 + 2κ2(L + 1)

]
φ(z) = M2φ(ζ). (97)

with L = 0,±1,±2, · · · . The same procedure applies for a state with arbitrary n.

3.4 Holographic Meson Spectrum

The normalizable solution to (97) including the radial nodes is

φL(ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
, (98)

with eigenvalues

M2 = 4κ2(n + ν + 1). (99)

To reproduce the data for mesons one has to redefine the vacuum energy by

shifting the values of M2:

M2 →M2 − 2κ2, (100)

thus

M2 = 4κ2(n + ν +
1

2
). (101)

The J = L + 1 leading Regge trajectory for the ρ − ω states is shown in Fig. 3.

The linear prediction from (101) corresponds to κ % 0.54 GeV.

14

Subtract Vacuum 
Energy
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Figure 3: J = L + 1 vector meson Regge trajectory for κ ! 0.54 GeV.

4 Truncated-Space Holographic Model: Baryons

We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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4 Truncated-Space Holographic Model: Baryons

We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances

69
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2
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M(t, u)interchange ∝ 1
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|b⊥|
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ut2
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|b⊥|

K+

p

dσ
dt = |M(s,t)|2
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M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
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ut2

M(s, t)gluonexchange ∝ sF (t)

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

MIT Bag Model (de Tar), large  NC,  (‘t Hooft), AdS/CFT
 all predict dominance of quark interchange:

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

s2

CIM: Blankenbecler, Gunion, sjb
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d
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

71

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

Quark Interchange
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.

72
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations

Vary, Harinandrath, sjb

74

Pauli, Hornbostel, Hiller, 
McCartor, sjb
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation
Light-Front QCD

Pauli, Pinsky, sjb

DLCQ

Use AdS/QCD  basis functions
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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• New initial approximation to QCD based on conformal 
invariance, and confinement

• Underlying principle:  Conformal Window

• AdS5: Mathematical representation of conformal gauge 
theory

• Systematically improve using DLCQ

• Successes: Hadron spectra, LFWFs, dynamics

• QCD at the Amplitude Level

AdS/QCD
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AdS/QCD G. F. de Téramond

AdS/CFT and QCD

Bottom-Up Approach

• Nonperturbative derivation of dimensional counting rules of hard exclusive glueball scattering

for gauge theories with mass gap dual to string theories in warped space:

Polchinski and Strassler, hep-th/0109174.

• Deep inelastic structure functions at small x:

Polchinski and Strassler, hep-th/0209211.

• Derivation of power falloff of hadronic light-front Fock wave functions, including orbital angular

momentum, matching short distance behavior with string modes at AdS boundary:

Brodsky and de Téramond, hep-th/0310227.

• Low lying hadron spectra, chiral symmetry breaking and hadron couplings in AdS/QCD:

Boschi-Filho and Braga, hep-th/0212207; de Téramond and Brodsky, hep-th/0501022; Erlich, Katz,

Son and Stephanov, hep-ph/0501128; Hong, Yong and Strassler, hep-th/0501197; Da Rold and Po-

marol, hep-ph/0501218; Hirn and Sanz, hep-ph/0507049; Boschi-Filho, Braga and Carrion, arXiv:hep-

th/0507063; Katz, Lewandowski and Schwartz, arXiv:hep-ph/0510388.

Caltech High Energy Seminar, Feb 6, 2006 Page 6

E. van Beveren et al.
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AdS/QCD G. F. de Téramond

• Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez,

hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower,

Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

• D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos,

Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erd-

menger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201;

Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnen-

schein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera,

hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219;

Casero, Paredes and Sonnenschein, hep-th/0510110.

• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma (η/s = 1/4π):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 . . .

Caltech High Energy Seminar, Feb 6, 2006 Page 7
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Thanks to my collaborators, especially

• Paul Hoyer

• Sid Drell

• Chueng Ji

• Dae Sung Hwang

• John Hiller

• Ivan Schmidt

• Kent Hornbostel
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I thought I had 
discovered the 

Theory of Everything 
But everything 
canceled out !

A Theory of Everything Takes Place

SCIENCE  VOL  265 15 SEPTEMBER 1995

String theorists have broken an impasse and may be 
on their way to converting this mathematical 

structure -- physicists’ best hope for unifying gravity 
and quantum theory -- into a single coherent theory.
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