Organic Technology for Solid State Lighting

and

Scientific Challenges of Solid State Lighting A DOE Basic Energy Sciences Workshop

Paul E. Burrows
Pacific Northwest National Laboratory
Richland, WA 99352

American Physical Society, March 6th 2007

Molecular Light Emitting Materials

Phosphorescent

Blue Green Red

Polymeric

$$C_6H_{13}O$$
 $C_6H_{13}O$
 $C_6H_{13}O$
 $C_6H_{13}O$
 $C_6H_{13}O$
 $C_6H_{13}O$
 $C_6H_{13}O$
 $C_6H_{13}O$

Challenges of OLEDs

- Extremely thin films lead to manufacturing challenges
- Light coupling techniques etc. must be scaled to large areas
- Extreme moisture sensitivity necessitates very low permeation encapsulation techniques

Courtesy: Universal Display Corporation

e.g. A color-tunable pixel

Z. Shen et al. Science 276, 2009 (1997)

Why OLEDs are not LEDs

		0
	Inorganic LEDs Crystalline, epitaxial	OLEDs Amorphous, flexible, weak adhesion, structural complexity
p,n-doping	Generally can be either p- or n-doped with substitutional dopant atoms at $10^{15} - 10^{20}/\text{cm}^3$	Materials are <i>either</i> electron or hole conducting. Negligible background charge carrier density. Electronic doping requires 1 – 5% loading and chemically changes the host molecules
mobility	up to ~ 1000 cm ² /Vs	Holes: 10^{-3} cm ² /Vs Electrons: $0 - 10^{-4}$ cm ² /Vs temperature and field dependent
excited states	Electronic: light generated by weakly bound excitons, weak exciton-phonon coupling	Excitonic: correlated e ⁻ -h ⁺ pairs conduction bands meaningless, strongly bound excitons, strong exciton-phonon coupling, spin effects important
Purity	Well known and easily characterized using, e.g. mass spec. typically 99.9999%	Poorly characterized, uncertain role of fragments, metal ions, etc. Typical commercial purity ~ 95%

You can buy small OLED displays

- eMagin (Bellevue, WA)
 - Full SVGA stereovision (800 x 3 x 600), 16.7 Million color **OLED** headset

Big OLEDs may be in the Future...

40" active matrix OLED panel (Samsung)

Experimental Organic Lightbulbs

Note the lack of a luminaire,- these are large area, low intensity emitters)

Efficiency performance of OLED

- Showa Denko K.K.:single layer phosphorescent polymer OLEDs external quantum efficiency of 17% (green) and 16% (blue) with durability of 350,000 hours at 100 cd/m². They will build a trial volumeproduction line by the middle of this year.
- Novaled claims "groundbreaking" results with its p-i-n OLED technology.. White top emission devices achieved a lifetime of 18,000 hours at 3 V and 1,000 cd/m². Green topemission OLEDs achieve 1,000 cd/m² at 2.5 V and 95 cd/A (about 110 lm/W) These green devices are based on Ir(ppy)₃.
- Universal Display Corporation achieved 30 Im/W at 1000 cd/m² (warm white).
- Osram: 25 lm/W white polymer devices
- Konica Minolta 60 lm/W, details unclear

Efficiency of Lighting System

- The system efficiency is important, not the bulb efficiency (i.e. bulb + voltage converter + luminaire)
 - Fluorescent lamp systems do not work anywhere near 80 lm/W (considering the ballast and luminaire losses).
 - OLEDs can operate directly from 115VAC and require no luminaire because they are a large area light source. This could be worth a factor of two in efficiency when comparing OLEDs to point source lamps (probably will require current regulation, though).
- High efficiency is only useful if consumers buy it.
 - Making square meters of OLED at a cost suitable for lighting is an unaddressed problem (all OLED manufacturing thus far is for displays).
- OLED lighting just looks different
 - There is value added in novelty (commercial, not necessarily energy)

Basic Research Needs for Solid State Lighting

Workshop Charge: To identify basic research needs and opportunities underlying light emitting diode and related technologies, with a focus on new or emerging science challenges with potential for significant long-term impact on energy-efficient and productivity-enhancing solid state lighting. Highlighted areas will include organic and inorganic materials and nanostructure physics and chemistry, photon manipulation, and cross-cutting science grand challenges.

Julia M. Phillips (Chair)
SNL

Paul E. Burrows (Co-Chair)
PNNL

Each subsequent improvement in lighting led to major lifestyle improvements and improvements in the energy efficiency of the light

Candle: 0.05 lumens per watt

Gaslamp: 0.5 lumens per watt

"Incandescent" Lightbulb 15 lumens per watt (5% efficient)

Pacific Northwest National Laboratory
U.S. Department of Energy 13

Why does lighting impact energy conservation?

- Lighting consumes 22% of the electricity generated in the U.S.A.
- That's 8% of the total energy consumption
- Costs \$50 billion per year
- Releases 150 million tons of CO₂ into the atmosphere each year
- Much of it is 19th century technology with poor efficiency

We should be able to do better

Lighting is a highly attractive target for reducing energy consumption!

Efficiencies of energy technologies in buildings:

Heating: 70 - 80% Elect. motors: 85 - 95%

Fluorescent: 20% Incandescent: 5%

Conventional Lighting is Limited

Energy Efficiency: Solid-state lighting is potentially **10X and 2X more efficient** than incandescent and fluorescent lamps, respectively.

Effects of widespread adoption of 50% efficient SSL

- SSL has the potential, by 2025, to:
 - decrease electricity consumed by lighting by 62%
 - decrease total electricity consumption by 13%

Projected Year 2025 Savings	<u>US</u>	World
Electricity used (TW-hr)	620/ year	1,800 /year
\$ spent on Electricity	42B/ year	120B/ year
Electricity generating capacity (GW)	70	~200
Carbon emissions (Mtons)	100	~300

Basic Research Needs for Solid State Lighting May 22-24, 2006

Workshop Chairs: Julia Phillips (Sandia National Labs)

Paul Burrows (Pacific Northwest National Lab)

Science Panel Chairs:

LED: Jerry Simmons (SNL)

Bob Davis (Carnegie Mellon U)

OLED: Franky So (U of Florida)

George Malliaras (Cornell)

Cross-Cutting: Jim Misewich (BNL)

Arto Nurmikko (Brown U)

Darryl Smith (LANL)

Charge: identify transformational science

Output: www.sc.doe.gov/bes/reports/list.html

Total 79 participants

Workshop Panel Structure

- ▶ The workshop highlighted
 - 12 Priority Research Directions (PRDs), each specific to an individual panel
 - 2 Grand Challenges (GCs) which overarch all panel

photon battery electrons active layers p-layer photon

substrate

LED Science

Cross-cutting Science

From Science to Deployment – a map for Solid-State Lighting

Discovery Research

Use-inspired Basic Research

Technology Maturation & Deployment

Rational design of SSL lighting structures

- Control of radiative & nonradiative processes in light-emitting materials
- New functionalities through heterogeneous nanostructures
- Innovative photon management
- Enhanced light-matter interactions
- Precision nanoscale characterization, synthesis, and assembly
- Multi-scale modeling quantum excitations to light extraction

- Unconventional lightemitting semiconductors
- Photon conversion materials
- Polar materals and heterostructures for SSL
- Luminescence efficiency of InGaN
- Managing and exploiting disorder in OLEDs
- Understanding degradation in OLEDs
- Integrated approach to OLED fundamentals

Technology Milestones:

By 2025, develop advanced solid state lighting technologies with a product system efficiency of 50 percent with lighting that accurately reproduces sunlight spectrum.

Applied Research

- Materials and components for inorganic and organic lightemitting diodes research for improved efficiency and cost reduction
- Strategies for improved device light extraction
- Low-cost fabrication and patterning techniques and tools & manufacturing R&D
- Product degradation and reliability issues

- Developing national standards and rating systems for new products
- Commercial adoption and support
- Industrial partnership
- Legal, health, market, and safety issues
- Cost reduction
- Prototyping

Office of Science BES

Technology Offices EERE

GRAND CHALLENGE 1: Rational design of solid-state lighting structures

Today, light-emitting solid state materials are discovered rather than designed.

The CHALLENGE:

Can we design optimized device components that assemble into a high efficiency charge-to-light conversion system?

Rational design of solid-state lighting materials

- Novel oxychalcogenide materials have shown wide, direct bandgap behavior:
 - How do we design other such materials?
 - Multiscale theory and modeling to predict optimal structure
 - Fabrication of materials and structures designed to optimize properties:
 - Optical
 - Transport
- Design of organic light emitting materials
 - Design of charge transport properties, spin-orbit coupling, etc.

$$\begin{array}{c|c} * & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline \end{array}$$

GRAND CHALLENGE 2: Control of radiative and nonradiative processes in light-emitting materials

Light-emitting efficiency is determined by competition between radiative and non-radiative processes.

The CHALLENGE:

Can we understand and control the physics of photon generation and emission?

Control of radiative and non-radiative processes in light-emitting materials

Science questions and opportunities

What limits the electroluminescence efficiency of inorganic and organic semiconductor LEDs? What is the role of:

- extended and point defects (e.g. InGaN)
- polarization fields
- material inhomogeneities

Can we tailor defect and nanostructures for higher efficiencies?

Can we enhance radiative rates through deliberate modulation of the photonic density of states?

E y

Example "big questions" for OLED Workshop report, Appendix 5

- Why are organic phosphors limited to a radiative lifetime > 0.5µs and what is the lower limit?
- ► How do impurities affect device efficiency and lifetime and how can we assay to the accuracy required to answer such questions?
- Can we engineer air-stable organics and injecting cathodes?

Applications driven but fundamental science questions

Summary

New lighting technology is "low-hanging fruit" in the drive for energy efficiency

Increase efficiency by 10X

Extrapolations of current technologies will not meet this goal

Old technologies; fundamental limits

Solid-state lighting can transform the way we light the world

Success requires:

- Fundamental understanding to optimize current SSL approaches
- Discovery research to reveal the basis for breakthrough efficiencies

SSL research will also drive discoveries in photon-matter interactions, new materials/structures, and new tools/methods

www.sc.doe.gov/bes/reports/list.html