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Bio-inspired catalysts for sustainable large scale
energy production and conversion

Photosynthesis (120 TW) employs catalysts that operate with
essentially no overpotential. Nature’s energy transducing
processes are thought to be efficient.

2H,0 = 4H* +4e + O, oxygen evolving complex
H, = 2H* + 2e- hydrogenase

O, + 4H* + 4 + 4H*,,peq) = 2H,0 + 4H* ) 0eqy  COMPplex 4

These enzymes provide the basic paradigms for fuel cell
operation and regeneration of hydrogen and oxygen.

it = 9) Nature has something to offer
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Carotenoid- Phthalocyanlne antenna model systems
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2) Charge separation and the generation of redox

potential
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A carotenoporphyrin-fullerene triad artificial
reaction center

/\/b@
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% )
( Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.;
~— Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1997, 119, 1400-1405
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Optically excited artificial reaction centers
separate charge and convert light energy to
electrochemical redox energy

The best C-P-Cg, triads:

.+ o__
Yield of charge separated state ~ 100% C _P_C60
Stored energy ~1.0 electron volt
Lifetime = hundreds of ns at room temp.
1 microsecond at 8K

AR Dipole moment ~160 D
§< Smirnov, S. N.; Liddell, P. A.; Vlassiouk, I. V.; Teslja, A.; Kuciauskas,D.;
e
ﬂ%\/ Braun,C. L.; Moore, A. L.; Moore, T. A.; and Gust, D. J. Phys. Chem. A, 2003,

oty 107, 7567-7573

hotosynthesis



eV

Critical branch
point controls
yield of final
charge separated
state as a
function of A,

AGe, V.

Photosynthesis
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Charge separation with a sensitized
semiconductor - emf and redox chemistry

Excited state sensitizer (S*) injects an electron into the CB of the
semiconductor

E vs. NHE (V) atpH 7

A
-1.07]

0.07]

1.07]

2.07]

3.07]

Conducting S* is used as an oxidant
/glass (ITO) . .
o STst with ?p_proprlate c.atalyst
e to oxidize something
(water).

‘/,e< Dred
S./S* Gratzel photoelectrode:

D
N absorption cross section

advantage

VB

2H*
& Reductive chemistry (
emf H,



Currently, the best human engineered sustainable
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Currently, the best human engineered sustainable
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Coupling sustainable sources of emf to the synthesis of fuel
requires at least two chemical processes:

1) A reductant to provide electrons - e.g., H,O
H,O — O, + 4 electrons + 4H*

2) An oxidant to receive electrons - e.g., CO,
CO, + electrons + H* —— CH;0H, CH,, etc.

Nature provides catalysts that efficiently direct chemical
potential along these reaction coordinates. Challenges are
to use these catalysts or abstract their catalytic sites in
synthetic constructs and couple them to emf

A closer look at Nature’s catalysts....




Contrast of bio-catalysts with human-engineered
catalysts for mainstream energy transduction

Biological Human engineered
Living organisms use FeS centers, Fe, Cu, Carbon, Pt with alloys and
Mn and sometimes Ni intermetallic compounds, efforts

span periodic table

C-C bond cleavage facile. No good catalysts for C-C bond
cleavage in context of low temp fuel
cell

Pathways to synthesize MeOH, EtOH, CH,. Electroreductive synthesis of low
etc., from CO, efficiency, multiple products

Catalysis involves covalent intermediates Emphasis on surface structure
with catalytic sites having distinct 3- (except bio-inspired ones)
dimensional architecture to match

transition state structures for lowering

AG#*. Consequence: slow.

Can use protonmotive force as necessary Use electromotive force Iy




A CFCl

¥4

Platinum vs. PtBI

Pt
(111) plane
Pt-Pt 2.77 A (001) plane
Pt-Pt4.32 A

Thanks to Frank DiSalvo



Sub-20-nm Patterning on Raith 150 Proteins offer true 3-
http:/{ywww.rle.mit.edu/sebl/pdfs/raithresol. pdf dimensional
| structures with much
higher spatial
resolution than

Pad and Gate

T human-engineered
i ” N devices to date and
Ll 3 come with a library of
A catalytic functions
R\ \\’ refined by a few x 10°

?"’7 e %(F ~ years of natural
G | ~ selection and can be
A/} tuned by molecular
O~ ==X biology techniques

Figure 4 The pMMO metal centres viewed approximately 90° from the orientation shown ~ ‘CuANOM’, contoured at 46) and near the zinc absorption edge (red, ‘Highres’, contoured
in Fig. 2a.The distances are measured between metal ions. Anomalous difference Fourier  at 40) are superimposed on the final 2F —F ¢ electron density map (light blue, contoured
maps calculated using data collected near the copper absorption edge (vellow, at 10). @, The mononuclear copper site. b, The dinuclear copper site. ¢, The zinc site.




3-dimensional Structure of the oxygen evolving
complex

C P680

Q165 \e' H190
Py 9.
2HO =  Xp! \
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et Ferreira et al. Science 2004
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To couple enzymes to emf an active site - metal
interface must be made. Molecular wire, redox relay
shuttle, conducting polymer, redox hydrogel, or
other means of electrically connecting catalytic site
to electrode.

4872 Chemical Reviews, 2004, Vol. 104, No. 10 Calabrese Barton et al.
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Figure 2. Alternative electron-transfer mechanisms. (a) Direct electron transfer (tunneling mechanism) from electrode
surface to the active site of an enzyme. (b) Electron transfer via redox mediator.



We are encouraged by research demonstrating that
significant current can be pushed through a “molecular wire”
at low bias. This mechanism could couple sustainable
electrical energy to bio-inspired catalysts for synthesis of

fuel.
J. He, et al., J. Amer. Chem. Soc., 127, 1384-1385 (2005).
In single molecule conducting AFM 40 a N e MM 5

studies of conducting polymers and 0¢ —2|E
molecules with low Beta, currents of (
about 0.1 nA are observed at biases (
where observations are reversible.

Current (nA)

0.1 nA corresponds to ~ 6x108 e-s*

This easily exceeds by orders of -40

-1 -0.5 0.5 1

0
magnitude the turnover number of any . 1Ig Dias &)
enzyme under consideration 6l L. 4 600 C
J &C‘ £21 b /‘{l 500¢ ]
. . = &k &~ 1 400} ;
Even with a footprint of 100 nm?, 20 ] 0 _

. . . = 1 £ a (V)2 b 1 wSTATE Uy,
electrodes derivatized with enzyme = ;gf/ : sl 200 | & \)
capable of high k_,, could potentially Spgpapemeey s 4 g <///\>W
process ~ 102! events/cm? per second. il i current Divisor, X ~—



A synthetic active site mimic of iron-only

hydrogenase
; . . O
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Synthetic analogue shows catalytic H* reduction on vitreous
carbon electrode Tard et al., (Pickett), Nature, 433, 610 (2005); N&V 433, 589 (2005)



A photoelectrochemical fuel cell and reforming
process generating H,
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Hybrid Enzyme-Based
Photoelectrochemical Fuel Cell

Photoanode Cathode
S*IS™*
e/
DI
cB v NAD(P)HEnZyme
Fuel
e- /
S /S AlA
Oxidized
NAD(P)* Fuel :‘_’
ions
| Load |
ATE e~ —>» e —>

NAD* is not reduced at the Pt cathode or at the photoanode
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Photoelectrochemical Biofuel Cell

Photoanode

/ FTO on glass
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Photoelectrochemical Biofuel Cell

Photoanode

P Nanoparticulate TiO, or SnO,

CB
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Photoelectrochemical Biofuel Cell

Photoanode

Porphyrin sensitizer
/ pny
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Photoelectrochemical Biofuel Cell

Photoanode

S*IS*

hv
Aqueous buffer:
S,/S™ 0.25 M tris, pH = 8.0

0.1 M KCI
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Photoelectrochemical Biofuel Cell

Photoanode Cathode — Hg/Hg,SO,

Nafion

Dehydrogenase

NADH Fuel

Oxidized

NAD? fuel

H

H* lons
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Fuels and Enzymes

Center for the Study

3-D-Glucose f-D-Gluconolactone
H OH GDH H OH
HO H’O * NAD+ 2 HO H/O + NADH + H+ (% rIbUIose-G-
N T T e Ho-\— phosphate + CO,,
| l | M o starting with glucose-6-
phosphate)
ADH AldDH FDH
CH,OH ——— H,C=0 ——» HCOO- ——» CO,
NAD* NAD* NAD*
ADH AldDH
CH,CH,OH ———» CH;CH=0 ——» CH;COOH
NAD* NAD*

hotosynthesis



Thermodynamic design parameters for the
dye sensitized photoanode

NHE

—0.93 —

- 0.67 41—

- 0.63

- 0.07—

— NAD* + e-—> NAD’

P+ +e—> P*
— TiO, E¢4(FTO, pH8)

. SnO, E;(ITO, pH7)

— NADH™ + e —>NADH

— P*+e—> P

Center for the Study

hotosynthesis

The negative potential

of P" is necessary to inject
an electron into the CB of
TiO,

Output poised at ~-0.60 V

hv

rd

The high oxidation potential
of P+ is necessary to oxidize
NADH by a 1 electron process
NAD+/NADH poised oxidizing




Characterization and Analysis of

Two-Compartment Bio Fuel Cell Function

Center for the Study
of Early Events in
Photosynthesis

¢ Effect of [enzyme] and [methanol] on |-V curve
¢ Absorption Spectra

¢ Light Harvesting Efficiency (LHE)

¢ Photocurrent

¢ Incident Photon to Current Efficiency (IPCE)
¢ Quantum Yield

¢ Photocurrent-Voltage Curve (I-V Curve)
+ Fill Factor (FF)



Absorption Spectra, LHE, Photocurrent and
IPCE
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Photobiofuel Cell Performance

., = 55 mA/cm?
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Energetics

NHE
—0.93—1— NAD*+ e —> NAD’
- 0-67 . P0+ + e-_> P*

~0.07—l— SnO, E4(ITO, pH7)

0.92—— NADH™ +e- —»NADH
1.231— P*+e—P
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N.B., Hydrogen ions
can be reduced to H,
by electrons from the
conduction band of
TiO,.



Reforming biomass to H,

Pt/Carbon

FTO/TIOy
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Photoanode
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Hydrogen Production

Unwetted Pt Cathode

ETEK Pt/C Cathode




Hydrogen Production

2.0 3.5 mM NAD*
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16 F e
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Additional Controls

Micromoles Hydrogen

__— 4 mM NADH

I

No Porphyrin

v _

- - No NADH
v Dark
/
/
— — = — A — )
20 40 60 80 100 120

ETEK Pt/C cathode, 7mm X 11
mm, 460<A<1100 nm
Ar purged

Minutes of lllumination



Current efficiency and preliminary
thermodynamics

Quantum Yield at
520 nm = 2.5%

n
T

w
T

ETEK Pt/C cathode, 7mm X 11
mm, 460<A<1100 nm

Micromoles of Hydrogen Produced

di Slope = 0.46 Ar purged

1

O 1 1 1 1

0 2 4 6 8 10 12
Micromoles of Electrons Passed
S The oxidizing side poises NAD+*/NADH oxidizing
2 enough to oxidize ethanol to aldehyde while
o

g producing H, at pH 8 and 1 atm H, gas.
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Solar Energy Conversion
technological p,otoinduced biological

photovoltaic charge separation photosynthetic

reaction center
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energy production and use is the assembly of catalytically
active sites of key redox enzymes and others in artificial

. constructs and electrically coupling them to

<§\%\ %é) electrodes thereby harnessing Nature’s catalytic
. prowess to meet human energy needs.
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