

Atoms on a small scale behave like nothing on a large scale，for they satisfy the laws of quantum mechanics．．．－Richard Feynman A century ago，quantum mechanics changed our understanding of the building blocks of our universe．Today，scientists are using quantum physics to teleport information，create unbreakable codes，and build powerful new computers．We are on the verge of a new technological revolution．．．

How many cubes do you see？
In formation is everywhere－in books，text messages，DNA，computers．Quantum physics doesn＇t usually play a role in these storage formats．But information can also be packed into tiny structures like atoms，where quantum physics rules．
The quantum world is strange．Consider the picture at left：do you see 6 cubes，or 10？Just as your mind can interpret the image in two different ways，quantum systems can be in multiple states at once．This is called a superposition．
Look again：at any instant your mind picks a cube orientation，and the contradiction vanishes．Quantum superpositions are similarly fragile．Measurement，meaning an interaction with the outside world，causes a quantum system to＂collapse＂to one of its component states．
 to how the＂bits＂ 0 and 1 carry informa－ tion in regular com－ puters．Qubits can be made from any quantum system that has two states． In the picture at left，these states are depicted as electron orbits in an atom．

Quantum COmput ers will harness superpositions to quickly solve problems that would take today＇s computers years． With each added qubit，the processing power of a quantum computer doubles．Through massive parallel processing，quantum com－ puters are expected to easily crack popular encryption schemes and offer faster ways of searching vast databases．

in teleportation，information is transferred from one particle to another．These particles must be entangled，meaning they share a quantum state，even if they are separated in space．Scientists then make measurements on the entangled system，which allows them to teleport the quantum state from one place to another．Ion traps like the one shown above have been used to teleport information a distance of up to one meter．

Quantum cryptography is spy－proof．When an eavesdropper attempts to intercept a message encoded using quantum cryptography，the message is altered by the eavesdropper＇s measurement．Unlike with＂classical＂information （e．g．emails and phone calls），senders can reliably detect snooping．

The Joint Quantum Institute（JQ1）is a research partnership between University
of Maryland（UMD）and the National Institute of Standards and Technology The of Maryland（UMD）and the National Institute of Standards and Te Chnology．The
Physics frontier Center at JOl is funded through a cooperative agreement with the Physics Frontier Center at tah is
NSF and operated within the IOI． Development Team
APS：Gabriel Popkin，Theodore Hoda
JQl：Emily Edwards，Steve Rolston
APS：Gabrie Popkin，Theodore Hodapp，Monica Plisch
Jal：Emily Edwards，Steve Rolston
Design by Emily Edwards，JOI，and Nancy Bennett－Karasik，APS www．jqi．umd．edu

