The Future of Condensed Matter and Materials Physics

Steven M. Girvin

Yale University

APS Meeting March 3, 2003

1

Connections

Paradigms

"Spherical Cow" Paradigm

- equilibrium
- linear response
- ordered
- non-interacting

9

• local

Dark Reality

- non-equilibrium
- non-linear
- disordered
- interacting
- non-local

Terra Incognita

'Soft-Matter' and Physics at Human Scales

The World is an interesting and complex place...

Navier-Stokes Equations Glycerol/water into Air

A Cascade of Structure in a Drop Falling from a Faucet, X. D. Shi, M. P. Brenner and S. R. Nagel, Science 265, 219-222 (1994).

Crumple

S. R. Nagel

Avalanche:

S. R. Nagel

The Thomson Problem and Spherical Crystallography (Nelson and Weitz groups, Harvard)

1904: J. J. Thomson asks how particles pack on a sphere – relevant to viruses, colloid-coated droplets, and multielectron bubbles in helium

Simian virus SV40

"Colloidosome" = colloids of radius *a* coating water droplet (radius *R*) -- Weitz Laboratory

Ordering on a sphere \rightarrow a minimum of 12 5-fold disclinations, as in soccer balls and fullerenes -- what happens for R/a >> 1? • Finding the ground state of ~26,000 particles on a sphere is replaced by minimizing the energy of only ~ 250 interacting disclinations, representing points of local 5- and 7-fold symmetry.

• Grain boundaries in ground state for R/a > 5-10 have important implications for the mechanical stability and porosity of colloidosomes, proposed as delivery vehicles for drugs, flavors and fragrances.

Bausch et al. Science (in press)

Dislocations (5-7 defect pairs) embedded in spherical ground states

'Hard Matter' and the Quantum World of Electrons

RNG, Field Theory Paradigm

- Powerful ideas and tools
 - quantum criticality
 - stability analysis of fixed points
 - recognize danger of 'fine tuning'
 - direction of flow hints at strong coupling f.p.
 - broken symmetry
 - 'emergence'; new degrees of freedom

2 eV

Band Insulator

- fractionalization of particles
- non-Fermi liquids

10⁻⁴ eV

Al, Cu, Si

Fermi Liquid

Superconductor

Emergence from the muck (thank goodness for stable fixed points!)

Fractional charge and statistics (electrons are gone)

Chiral relativistic bosons

Chern-Simons angle is adjustable

$$\sigma_{xy} = \frac{p}{q} \frac{e^2}{h}$$

Fractional Quantum Hall State

'Which Layer?' Broken Symmetry

Counter-flow superfluidity rapidly relaxes charge defects created by tunneling.

> 13 J. Eisenstein

Exact Quantization of "Hall" drag: Hall voltage without current

J. Eisenstein¹⁴

Electronic Liquid Crystals

Higher Landau Levels Koulakov, Fogler, and Shklovskii; Moessner and Chalker 1996

Nematic to Isotropic Transition Fradkin and Kivelson Wexler and Dorsey Radzihovsky and Dorsey

'Quantum Soft Matter'

Narrow band noise

J. Eisenstein 15

Struggling with other Strongly Correlated Systems is Difficult

- high Tc
- heavy fermions
- oxide magnets, CMR, magnetic SC
- ladders, chains
- organics
- •

The Nano World

Kondo Mirage in a Quantum Corral $T_{\kappa} = 56 \mathrm{K}$

Vortex-induced LDOS of $Bi_2Sr_2CaCu_2O_{8+\delta}$ integrated from 1meV to 12meV

J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, *Science* 295, 466 (2002).

$\frac{\text{STM image of LDOS modulations in Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}}{\text{in zero magnetic field}}$

C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, cond-mat/0201546

STM Electron Spin Resonance

Scanning SQUID

Hans Hilgenkamp, Ariando, Henk-Jan H. Smilde, Dave H.A. Blank, Guus Rijnders, Horst Rogalla, John R. Kirtley, and Chang C. Tsuei, Nature, March 6, 2002 ₂₂

Nano-Mechanics

H. Ohnishi et al. Nature 395, 780 (1998)

Free-electron model of a metal nanowire

Structural relaxation due to surface self-diffusion of atoms

Elongation/compression=nucleation/annihilation of kink-antikink pairs

J. Bürki, R. E. Goldstein, and C. A. Stafford, cond-mat/0208540

Nano-mechanical "AND" Gate

Curvature Plots

Ready

After B

After (B then A) D. Eigler

3-Input Sorter Molecule Cascade Logic Circuit

Quantum Dots and Interferometers

two terminal

A. Yacoby et. al., PRL 74, 4047 ('95)

four terminal

R. Schuster *et. al.*, Nature **385**, 417 ('97)

Mach-Zehnder interferometer

Tools

- Photons
- Neutrons
- Numerics

Adapted by Millis and Orenstein from: Loeser et al., *Phys. Rev. B* **56**, 14185₀(1997) Federov et al., *Phys. Rev. Lett.* **82**, 217 (1999)

ARPES pseudogap

Coherent Synchrotron Radiation

Dynamics: liquids, polymers, bio-molecules, CDWs, glasses, critical phenomena

Spallation Neutron Source

- high intensity
- broad energy range
- pulsed/t-o-f/timing

Numerical Tools

Brute force is not enough...

•QMC -cluster/loop/worm -fermions •DMRG -higher dimensions •CORE •LDA (+U) -Order N •DMFT $d = \infty$ -cluster

Multigap Superconductivity in MgB2

 $\cdot \Delta(\mathbf{k})$ on Fermi surface at T=4 K in color scale

Choi, Roundy, Sun, Cohen & Louie, Nature (2002)

- Gap distribution as a function of temperature.
- Expt: $\Delta_1 \sim 2 \text{ meV}; \ \Delta_2 \sim 7 \text{ meV}$

Dynamical Mean Field Theory

δ -Plutonium

Realistic band structure + local correlations

Savrosov, Kotliar and Abrahams Nature (2001)

Electronic Structure Challenges

- Spectroscopy of real materials
- Many body theory for real materials
- QMC: fermions; real-time vs. Euclidean time
- Prediction, rational materials design
- Multi-scale modeling spanning many decades in length and time

New NMR Tools

Quantum Computation and NMR of a Single 'Spin'

Radio-Frequency Single Electron Transistor (RF-SET)

First Observation of RAMSEY FRINGES in a quantum electrical circuit

Vion et al. Science 2002

Future of Quantum Computation

Superconducting Circuits

- Two qubit gates now being established (NEC group Nature 2003)
- crude CNOT gate within 2 years?
- Bell Inequality Test within 5 years?

- Quantum Dots
- NMR
- Ion Traps
- Optical Lattices
- Quantum Optics

-quantum encryption will become a practical technology

Convergence of CM and AMO

- optical lattices
- Mott-Hubbard Transition
- Spinor Condensates
- Rotating Condensates = QHE
- Spin waves, vortices, Landau damping
- quantum computation
- many-body effects in condensate clocks
- 1D Luttinger liquids
- quantum chaos in optical 'billiards'

Mott Insulator – Superfluid

b Insulating state

a Superfluid state

 ω/T s to clas

Greiner et al. Nature 2002 10nK: 200Hz (!) ω/T scaling; quantum to classical cross over

U: 1 kHz

is in the audio!

Thanks for slides to:

- C. Kallin
- C. Stafford
- S. Sachdev
- H. Manoharan
- D. Eigler
- S. Nagel
- L. Radzihovsky

- S. Louie
- A. Millis
- M. Devoret
- R. Schoelkopf
- J. Kirtley
- J. Eisenstein
- M. Heiblum

The Future is Bright but will require some Heavy Lifting

協力:財団法人 日本相撲協会