Sedimentation of particles How can such a simple problem be so difficult?

Élisabeth Guazzelli

elisabeth.guazzelli@polytech.univ-mrs.fr

IUSTI - CNRS - Polytech'Marseille

Sedimentation of particles

• $Re = aU/\nu \ll 1 \Rightarrow$ Stokes' flow

- $Pe = aU/D \gg 1 \Rightarrow$ Only hydrodynamics
- Solid and monodisperse particles for simplicity!

Sedimentation of particles

Sedimentation of a suspension of spheres

Sedimentation of a suspension of fibers

Sedimentation of a cloud of particles

Sedimentation of a single sphere

Stokes' velocity $U_{S} = 2(\rho_p - \rho_f)a^2g/9\mu$

Long-range interactions $u \sim O(\frac{aU_S}{r})$

Stokes 1851

Uniformly dispersed spheres

• Velocity of a pair of spheres at a separation r:

• Averaging over all possible separations occurring with probability p(r):

$$\langle U \rangle = U_S + \int \Delta U(r) p(r) dr^3$$
 diverges!
 $O(\frac{aU}{r})O(1)O(r^2)$ as $r \to \infty$

Multibody long-range hydrodynamic interactions

Sedimentation of spheres in a vessel

polytechnique

Mean velocity

- Hindered settling: $\langle U \rangle = U_S f(\phi)$ Richardson-Zaki 1954: $f(\phi) = (1 - \phi)^5$
- Main effect = Back-flow
- Batchelor 1972:
 $f(\phi) = 1 6.55\phi + O(\phi^2)$ assuming uniformly
 dispersed spheres
- Results depend on microstructure in turn determined by hydrodynamics

Velocity fluctuations

Large anisotropic fluctuations

Sphere-tracking in an index-matched suspension Ham & Homsy 1988, Nicolai *et al.* 1995

Divergence of velocity fluctuations?

- Randomly distributed particles
- Box of size $a\phi^{-1/3} < l < L$
- Statistical fluctuations $\sqrt{N} \rightarrow \Delta U_{\parallel} \sim \frac{\sqrt{N} \frac{4}{3} \pi a^3 (\rho_s \rho) g}{6 \pi \mu l} \sim U_S \sqrt{\phi \frac{l}{a}}$

 Large-scale fluctuations are dominant

 $\Delta U_{\parallel} \sim U_S \sqrt{\phi \frac{L}{a}}$ diverges! Caflisch & Luke 1985, Hinch 1988

BUT no such divergence seen in experiments Nicolai & Guazzelli 1995, Segrè *et al.* 1997, Guazzelli 2001

More theories . . .

- Koch & Shaqfeh 1991: a non-random microstructure
- Tong & Ackerson 1998: turbulent convection analogy
- Levine et al. 1998: stochastic model
- da Cunha 1995, Ladd 2002: impenetrable bottom
- Brenner 1999: wall effect

- Luke 2000: stratification \rightarrow fluctuation decay
- Tee et al. 2002, Mucha et al. 2003-04: diffusive spreading of the front \rightarrow stratification \rightarrow fluctuation decay
- Nguyen & Ladd 2005: polydispersity \rightarrow stratification
- Hinch 1985, Asmolov 2004, Luke 2005: bottom and top = sink of large-scale disturbances

Relaxation of large-scale fluctuations

Initially, the large-scale fluctuations dominate the dynamics. But, they are transient as the heavy parts settle to the bottom and light parts raise to the top.

Left with smaller-scale fluctuations

Then, smaller-scale fluctuations are dominant until the arrival of the upper sedimentation front. Why fluctuation length-scale $\sim 20a\phi^{-1/3}$? Chehata, Bergougnoux, Guazzelli, & Hinch 2005

Sedimentation of particles

Sedimentation of a suspension of spheres

Sedimentation of a suspension of fibers

Sedimentation of a cloud of particles

Sedimentation of a single fiber

Coupling between orientation and velocity

Sedimentation of fibers in a vessel

polytechnique

Mean Velocity and orientation

Enhanced sedimentation and vertical orientation

Fiber-tracking in an index-matched suspension Herzhaft & Guazzelli 1999

Packet instability \rightarrow **Streamers**

Fluorescing fibers within a laser sheet

Metzger, Guazzelli, & Butler 2005

Large-scale streamers

Vertical velocity versus time from PIV measurements Metzger, Guazzelli, & Butler 2005

Modeling the instability

Koch & Shaqfeh 1989, Mackaplow & Shaqfeh 1998, Butler & Shaqfeh 2002, Saintillan, Darve, & Shaqfeh 2005

Simulations versus Experiments

Steady state? Wave-length selection?

Saintillan, Shaqfeh, Darve, Metzger, Guazzelli, & Butler 2005 see more on Video Entry #17 (Gallery of Fluid Motion)

Sedimentation of particles

Sedimentation of a suspension of spheres

Sedimentation of a suspension of fibers

Sedimentation of a cloud of particles

Spherical cloud of spheres

 $\stackrel{-2\pi\mu\frac{2+3\lambda}{\lambda+1}R\mathbf{U}_{\text{Cloud}}}{\bigstar} \quad \text{Drag force (Hadamard, Rybczyński 1911):}$

$$\mathbf{F^h} = -2\pi\mu \frac{2+3\lambda}{\lambda+1} R \,\mathbf{U}_{\text{Cloud}}$$

with $\lambda = \mu_s/\mu$

Settling velocity:

$$\mathbf{U}_{\text{Cloud}} = \frac{N\frac{4}{3}\pi a^3(\rho_p - \rho)\mathbf{g}}{2\pi\mu\frac{2+3\lambda}{\lambda+1}R}$$

Suspension mixture = effective fluid of viscosity μ_s

Stability of the cloud?

- It is important to note that the drop is found to be stable without any surface tension to maintain the spherical shape. Feuillebois 1984.
- A sperical blob shape is especially well suited to a study of random particle migration ... because it maintains essentially constant form. Nitsche & Batchelor 1997.
- A single spherical drop does not deform substantially. Machu et al. 2000.
- At creeping flow conditions the suspension drop retains a compact, roughly spherical shape while settling. Bosse *et al.* Gallery of Fluid Motion 2005.

But the cloud is unstable!

École polytechnique

Sedimentation of particles - 2005 - p.24/27

Evolution of the cloud

Cloud composed of 3000 point-particles Successive instabilities? Break-up?

Metzger, Ekiel-Jeżewska, & Guazzelli 2005 see more on talk FK.00007

Conclusions

Long-range nature of the multi-body hydrodynamic interactions

Coupling between hydrodynamics and suspension microstructure

 \rightarrow Collective dynamics: swirls, streamers, instabilities

- More open problems
 - Larger concentrations
 - Bidisperse or polydisperse particles
 - Anisotropic particles (platelets)
 - Deformable particles: Saintillan et al. 2005
 - Non-Newtonian fluids: Mora, Talini, & Allain 2005
 - Inertia

Collaborations

- B. Herzhaft, H. Nicolai, Y. Peysson (ESPCI Paris) and D. Chehata, B. Metzger (IUSTI Marseille)
- L. Bergougnoux (IUSTI Marseille)
- E. J. Hinch (University of Cambridge)
- M. L. Ekiel-Jeżewska (IPPT-PAN Warsaw)
- J. E. Butler (University of Florida)
- E. Darve, M. B. Mackaplow, D. Saintillan, and E. S. G. Shaqfeh (Stanford University)
- G. M. Homsy (University of California Santa Barbara)

