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Background A, B, C, D:

Some simple math starting from N-S
+ sequence of simplifications

Clearer “mechanistic” understanding of origin of
non-Gaussian statistics in turbulence
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Small-scale intermittency

Background A:

Analysis: Laurent Chevillard, Castaign,
Leveque & Arnéodo (preprint 2005)

Modane wind tunnel:
Kahalerras et al. (Phys
Fluids 1998)

Air jet : Ruiz
Chavarria et al.
(PRL 1986)
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Elongated tails in PDFs: ( + skewness in longitudinal direction)

Anomalous scaling (clustering and non-
trivial dependence on length-scale)

+

Elongated tails in PDFs

=

Wide body of literature, e.g.:

Anselmet et al., JFM 140, 1984
Kailasnath et al., PRL 68, 1992
Frisch, Turbulence, CUP 1995
Tabeling et al., PRE 53, 1995
Sreenivasan, Rev. Mod Phys. 71, 1999
Zeff et al. Nature 421, 2003
….
….



Observations:

• Non-Gaussian tails are very robust

• They occur in DNS, even at small Re turbulence

• They appear in ad-hoc turbulence models
   (not systematically derived from N-S):

- Shell models of turbulence (see Biferale Annu. Rev. Fluid Mech. 2003)

- Mapping closure (Kraichnan PRL 65, 1990; She & Orszag PRL 66, 1991)

• Simple mechanistic explanation “elusive” in 3D

• Do not occur in 2D turbulence (but see 1-D Burgers equation…)

Analysis: Laurent Chevillard, Castaign,
Leveque & Arneodo (preprint 2005)

Modane wind tunnel:
Kahalerras et al. (Phys
Fluids 1998)

Air jet : Ruiz
Chavarria et
al. (PRL 1986)
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Small-scale intermittency

Background A:



1-D Burgers equation:

Gaussian i.c.

 t

From: Kraichnan PRL 65, 
1990 (mapping closure)
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Here is a “trivial” picture of origin of non-Gaussian tails and skewness: free particle motion.
What is the 3-D analogue of this? Problems: which direction? Multiple velocity components..

Intense negative gradient occurs 
over smaller fraction of domain

Background B:



 

Restricted Euler dynamics in (inertial range of) turbulence:
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• Take gradient:

• Filtered Navier-Stokes equations:

Self-interaction
Pressure Hessian Subgrid-scale

(+ viscous) effects

Restricted Euler:         Vieillefosse, Phys. A, 125, 1985 
            Cantwell, Phys. Fluids A4, 1992

Filtered turbulence:    Borue & Orszag, JFM 366, 1998 
             Van der Bos et al., Phys Fluids 14, 2002:
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        Filtered SGS, subfilter 

Background C:
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Cayley-Hamilton Theorem

  

˜ A ji
d ˜ A ij

dt
= ˜ A ji(

˜ A ik
˜ A kj !

1

3
˜ A mk

˜ A km" ij)  #  
dQ

$

dt
= !3R

$

  

˜ A jk
˜ A ki

d ˜ A ij

dt
= ˜ A jk

˜ A ki(
˜ A ik

˜ A kj !
1

3
˜ A mk

˜ A km"ij )  #  
dR

$

dt
=

2

3
Q

$

2

• Invariants (Cantwell 1992):

• Singularity in finite time,  but

- Predicts preference for
  axisymmetric expansion

- Predicts alignment of
  vorticity with intermediate eigenvector of S: βs

Analytical solution:
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Restricted Euler dynamics               in (inertial range of) turbulence:H
ij
= 0

Remarkable projection (decoupling)!

More literature: 
Equations for all 5 invariants: 
          Martin, Dopazo & Valiño (Phys. Fluids, 1998)
Equations for eigenvalues, 
and higher-dimensional versions: 
          Liu & Tadmor (Commun. Math. Phys., 2002)

From: Cantwell, Phys. Fluids 1992)

Background C:



Models for pressure-viscous-SGS Hessian:

•  Stochastic differential equation (     constructed such that        is
    lognormal with imposed variance, yields stationary system, Girimaji & Pope, Phys. Fluids A2, 1990)

•  Model      by keeping track of material deformations:

- Tetrad dynamics (Chertkov, Pumir & Shraiman, Phys. Fluids 11, 1999; Nasso et al..)

- Cauchy-Green tensor evolution (Jeong & Girimaji, Theor. Comp. Fluid Dyn. 16, 2003)

•  At the cost of solving N > 8 ODEs (stochastic or deterministic), all these models predict
   intermittency and skewness (plus other things, such as vorticity alignment trends,…)

•  But “large” N precludes “text-book simple” insight into formation of non-Gaussian tails…
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We seek particular “projections” of Restricted
Euler dynamics that could illuminate formation

of non-Gaussian tails,

i.e. “are there any other simple ODE's like
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See: Yi & Meneveau, Phys. Rev. Lett. 95, 
164502, Oct. 2005 

Velocity increments: Lagrangian evolution
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Rate of change of longitudinal velocity increment,
following the flow (both end-points in linearized flow):

Velocity increments: Lagrangian evolution
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From a similar derivation for δv:
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Velocity increments: Lagrangian evolution
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4 ODEs
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Numerical experimentation shows
most basic trends towards intermittency 

not very sensitive to Q-coupling 

Velocity increments under Restricted Euler,
at fixed displacement length (linear vel. field):

H
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Does this simple system have ANY resemblance
to what happens in turbulence?

2563 DNS, filtered at 40η, evaluated
Lagrangian rate of change of velocity

increments numerically, and compared to
RHS of advected delta-vee equations

Advected delta-vee equations:
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See: Yi & M, Phys. Rev. Lett. 95, 
164502, Oct. 2005 
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Comparison with DNS,
Lagrangian rate of change of velocity increments:

2563 DNS, filtered at 40η, Δ=40 η, evaluated δu,   
δv, and their Lagrangian rate of change of

velocity increments numerically
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Evolution from Gaussian initial conditions, Q0=0:

Initial condition:

δu = Gaussian zero mean, unit variance
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Gaussian i.c.
t=0

t=0.18
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Evolution from Gaussian initial conditions, Q0=0:
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θ is random,

uniformly distributed in [0, 2p)

Rayleigh i.c.
t=0

Evolution from Gaussian initial conditions, Q0=0:



Basic properties: Phase-space & invariant

Invariant of advected delta-vee system: 
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Self-amplification:
Skewness in δu

Cross-amplification:
Intermittency in δv

“For small initial δv (particles moving directly
towards each other), gradient can become

arbitrarily large at later times”

“Degenerate saddle-node
of index 2

(Guckenheimer &
Holmes)”
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Alignment bias correction factor:
(thanks to Greg Eyink for pointing out the need for a correction)

See: Yi & Meneveau, 
Phys. Rev. Lett. 95, 164502, 
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Effects of neglected terms:
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Effects of Q-term: continuity

Q
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Hij = 0



 

Effects of neglected terms:
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Effects of dimensionality on Q-term:
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D=2: 
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Restricted Euler in 2D: no self-stretching of gradient
(i.e. Gaussian I.C. remains Gaussian…)
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Effects of dimensionality on Q-term:
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For general D: 
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The higher D, the weaker the
coupling with other directions,

more tendency towards long tails
from advected delta-vee system
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Suzuki et al. (Phys. Fluids 17, 2005):
DNS of 644 and 1284 turbulence shows PDFs

of δu in 4-D a bit more intermittent than in 3-D



Effects of pressure Hessian, SGS and viscous force gradients :
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In equation for joint PDF of (δu,δv), terms enter as conditional averages:

 

P(!u,!v)
1

!
!v2 "

1

3
!u2#

$%
&
'(
!u,!v ,P(!u,!v) "

2

!
!u!v !u,!v

#

$%
&

'(
 

2! P("u,"v)
r
m
r
i

r
2
!
#2 "S

kn

#x
m
#x

k

"u,"v ,P("u,"v)
r
m
e
n

r
!
#2 "S

kn

#x
m
#x

k

"u,"v
$

%&
'

()

2563 DNS, filtered at 40 η



Pressure Hessian

2563 DNS, filtered at 40 η
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Subgrid-scale
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Summary:

• We have found a higher-dimensional variant of the Burgers’ 1-D
   gradient-steepening equation:
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• Describes simple “mechanism” of self and cross amplification
  of velocity increments, leading to skewness in longitudinal and
  flare-up of long tails in transverse velocity increments.

• Due to Lagrangian nature, a measure correction must be
  applied to evolving PDFs.

• Q-δu2 correlation: Predicts correct trends as function of dimensionality.

• Quantitative predictions - stationary PDFs as function of scale:
  need to take into account the effects of neglected terms. Analysis of
  DNS shows these effects are “non-trivial” (& each term different trends).

See: Yi & Meneveau,
Phys. Rev. Lett. 95,
164502, Oct. 2005


