New Phenomena in Vortex-Induced Vibrations

C.H.K. Williamson

Fluid Dynamics Research Laboratories Cornell University

Supported by the Office of Naval Research

Motivation

Large vibrations of:

- Riser tubes bringing oil from the seabed
- Bridges and chimney stacks
- Heat exchangers
- Overhead power cables
- Many other applications

Tacoma Narrows Bridge

Hoover Diana Project Exxon-Mobil

TETHERED SPHERE

Does Resonance Look

Anything Like This?

Parameters in the problem

HERE !

Typical VIV System

Equation of Motion:

$$m\ddot{y} + c\dot{y} + ky = F_{fluid}$$

Cylinder displacement:
Fluid force:

$$y(t) = A \sin \omega t$$

 $F(t) = F_0 \sin(\omega t + \phi)$
 $f(t) = F_0 \sin(\omega t + \phi)$

Amplitude response

$$A^{*} = \frac{A}{D} = \frac{1}{(\underline{m}^{*} + C_{A})\zeta} \left[\frac{C_{Y} \sin \phi}{4\pi^{3}} \left(\frac{U^{*}}{f^{*}} \right)^{2} f^{*} \right]$$
MASS-DAMPING PARAMETER

Frequency response

$$f^* = \frac{f}{f_N} = \sqrt{\frac{(m^* + 1)}{(m^* + C_{EA})}} \qquad C_{EA} = \frac{1}{2\pi^3 A^*} \left(\frac{U^*}{f^*}\right)^2 C_Y \cos\phi$$

DEPENDS ON m*

VIV Response Modes

What is known about the wake vortex dynamics for a transversely oscillating cylinder

Williamson & Roshko (1988)

s J s

Example vortex wake modes

'2S' MODE

2 single vortices / cycle

'2P' MODE

2 pairs of vortices / cycle

2P – Ongoren & Rockwell (1988) for in-line oscillations

Vortex Modes

Initial Branch

'2S'

Lower Branch '2P'

Seen effects: m*ζ, m*

See extreme later

Numerical Simulations & Laminar \mathbf{VIV}

VIV Simulations

Govardhan & Williamson (2000)

Blackburn et. al. (2001) Lucor & Karniadakis (2005)

3D DNS

Challenges for CFD:

Experiment

- Must use 3D simulations to produce:
 - '2P' mode
 - $A^* > 0.6$

• Pushing up Re:

 • 1995
 $\text{Re}_{\text{max}} \sim 200$ (Newr

 • 1999
 $\text{Re}_{\text{max}} \sim 2000$ (Evan)

 • 2005
 $\text{Re}_{\text{max}} \sim 3000 - 10,000$?
 (Lucor)

(Newman & Karniadakis)(Evangelinos & Karniadakis)(Lucor & Karniadakis.....)

• LES:

• Not yet good agreement with experiments or between LES studies.

Spanwise Variation of A*

Techet, Hover, & Triantafyllou (1998)

Williamson-Roshko Map:

Suggests you can get 2S along part of span, 2P along other part of span

Relevant to Cable Dynamics

Perhaps the most basic question !

 \rightarrow What is A^*_{peak}

Cylinder y-motion only

A*_{PEAK} NOT SATURATED !

After 30 Years ...

The Griffin Plot is not yet fully defined !

Even for the paradigm case !

Controlled Damping

Damping Control Works !

Effect of Re

Note: curves look similar for each Re

Effect of Re

Good collapse of data:

$$A^*_{\alpha=0} = \log_{10}[0.41 \text{ Re}^{0.36}]$$

Klamo, Leonard, & Roshko (2005)

Independently find trend of amplitude increase with Re

(controlled damping)

The "Modified Griffin Plot"

Can we now collapse

the large scatter in the classical Griffin plot

Take into account Re !

5

Critical Mass

Equation for Oscillation Frequency

● Govardhan & Williamson (2000)
△ Khalak & Williamson (1999)
☑ Hover, Techet & Triantafyllou (1998)
④ Anand (1985)

$$f_{LOWER}^* = \frac{f}{f_N} = \sqrt{\frac{(m^* + 1)}{(m^* + C_{EA})}}$$

Best fit :
$$C_{EA} = -0.54$$

$$f_{LOWER}^* = \frac{f}{f_N} = \sqrt{\frac{(m^* + 1)}{(m^* - 0.54)}}$$

CRITICAL MASS RATIO
$$m_{CRIT}^* = 0.54$$

If
$$\mathbf{m}^* \to \mathbf{0.54}$$
, $\mathbf{f}^* \to \infty$

- If $\mathbf{m}^* < \mathbf{m}^*_{CRIT}$, L
 - Lower branch does not exist
 - Get stuck on upper branch

Infinite U*

$$U^* = \frac{U}{f_N D}$$

$\mathbf{U} \rightarrow \infty$	NO !
$\mathbf{D} \rightarrow 0$	NO !
$f_N \rightarrow 0$	YES !

$$f_N \sim \sqrt{k/m} \dots \text{ make } k = 0$$

REMOVE SPRINGS !

- Easily move with a feather
- Strong vortices.....

Expect large vibrations

....Now what happens ???

k = 0, NO SPRINGS

$$m^* = 0.6$$

k = 0, NO SPRINGS

Now: Remove mass gradually

k = 0, NO SPRINGS

Experiments for INFINITE U*

Rising Cylinder Trajectories

 $m^* = 0.78$

m* = **0.45**

Vortex Dynamics Behind a Rising Sphere

$$m^* = 0.08$$

Vortex Dynamics Behind a Rising Sphere

