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Some Effects of Frost

Something there is
that doesn’t like a wall,

That sends the frozen
ground swell under it

And spills the upper boulders
in the sun …
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The Forces Responsible…

for frost heave are the same
      long-range intermolecular forces

that underlie surface tension…

and also cause most solids close to their melting points to be
                                         molten at their surfaces.
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Thermodynamics of Interfacial Premelting



L
Tm T

Tm
      =       ps pl      =       pT

phase
equilibrium

force
balance

For van-der-Waals forces pT =
A

6 d3
    d

Tm T

Tm

 

 
 

 

 
 

1/3
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Marangoni versus Thermomolecular Flow

Film thickness determined
dynamically

Film thickness determined
thermodynamically



IceWater

inflow

Glass slide

Flexible membrane Inset

Axis

WARM COLD WARM

Ice Water

Premelted liquid

Flow

x

d(x)

h(x,t)

Lubrication Theory (Wettlaufer & Worster 1995,9

Experiments (Wilen & Dash 1995

Flow of Premelted Liquid



Lubrication theory gives volumetric flow rate in the premelted film to

be
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Similarity Solution and Comparison with Experiments
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Multiple Ice Lenses
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Film thickness determined by interfacial pre-melting and curvature

Net force on particle is

cf Archimedes

Thermodynamic Buoyancy

Where ms is the mass of ice displaced by the particle.

Rempel, Wettlaufer & W
PRL 2001
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Freezing of soil - formation of ice lenses
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Single Ice Lens - Complete Particle Rejection
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Single Ice Lenses in Nature – Needle Ice
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Dynamics of the Lenses and Frozen Fringe

New ice lens
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Calculations of ice-lens dynamics
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Calculations of ice-lens dynamics
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Calculations of ice-lens dynamics
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Freezing of a Colloidal Suspension
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Freezing of a Colloidal Suspension

† 

C

t
=

z
D(C)

C

z

 

 
 

 

 
 

Slow freezing rate

Fast freezing rate



Different Types of Behaviour



Summary and Conclusions

Long-range intermolecular forces can cause most solids to premelt at
their surfaces or at interfaces with other materials

Temperature gradients give rise to gradients in thermo-molecular pressure:
surface transport;
thermodynamic buoyancy

Competition between thermodynamic buoyancy and viscous fluid flow
determines heaving rates and lens initiation

Interplay between
morphological instability of lens front,

 nucleation beyond compaction layer and
thermodynamic buoyancy within compaction layer

may determine a wide range of different behaviours


