APS Division of Fluid Dynamics Meeting East Rutherford, NJ November 23-25, 2003

Using DNS to Understand Aerosol Dynamics

Lance R. Collins Sibley School of Mechanical & Aerospace Engineering Cornell University

Direct Numerical Simulations of Microstructures

Aerosols

- Dispersion
- Turbulence modulation
- Coagulation

Droplets*

- Breakup
- Coalescence
- * M. Loewenberg J. Blawzdziewicz V. Cristini

Polymer Molecules

- Orientation
- Stretch
- Drag Reduction
- * J. G. Brasseur

Outline

- Background on aerosols
- Direct numerical simulations (DNS)
- Numerical Results
- Theory
- Experiments
- Summary

Examples

DuPont TiO₂ Process

R. Shaw, ARFM 2003

Turbulent clustering

Aerosol particles in a turbulent flow field cluster outside of vortices due to a centrifugal effect, sometimes referred to as "preferential concentration."

Maxey (1987) Squires & Eaton (1991) Wang & Maxey (1993)

Strain Region

Snapshot of particle clustering in DNS

Snapshot from a DNS (St=1 and $R_{\lambda} = 54$). The **green tubes** are vortex tubes where fluid circulates rapidly and the **white** shows where the particle concentration is greater than 10 times the mean.

How does this affect coalescence rates?

Direct numerical simulation

Particle update

$$\frac{d\mathbf{x}_{p}^{(i)}}{dt} = \mathbf{v}_{p}^{(i)}$$

$$\frac{d\mathbf{v}_{p}^{(i)}}{dt} = \frac{\left[\mathbf{u}(x_{p}^{(i)}, t) - \mathbf{v}_{p}^{(i)}\right]}{\tau_{p}^{(i)}} + \sum_{\substack{j \neq i}} \mathbf{F}^{(ij)}$$
Stokes drag collisions
(neighborhood search)
$$\tau_{p}^{(i)} = \frac{1}{18} \frac{\rho_{p}}{\rho} \left(\frac{d}{\eta}\right)^{2}$$

Particle-particle interactions

Elastic Rebound:

Coalescence:

Interpenetration:

Parameters

Flow:

- U' turbulence intensity
- ε dissipation rate
- v kinematic viscosity

Particles:

 $\begin{array}{ll} d & \text{diameter} \\ \rho_p & \text{density} \\ n & \text{loading} \end{array}$

$$R_{\lambda} \equiv \sqrt{\frac{15}{\nu \varepsilon}} U'^2$$

$$St = \frac{\tau_p}{\tau_{\eta}}$$
 Stokes number
$$\frac{d}{\eta}$$
 size parameter
$$\Phi$$
 volumetric loading

Parameter Ranges

System	R_λ	St	d/η	Φ
Clouds	10^{4}	$10^{-4} - 10^{-1}$	$10^{-2} - 10^{-3}$	$< 10^{-6}$
DNS	50-160 *	$10^{-2} - 1$	$10^{-2} - 10^{-1}$	$< 10^{-5}$
Exp't	$10^2 - 10^3$	$> 10^{-3}$	$10^{-2} - 10^{-1}$	$< 10^{-5}$

- We are not able to simulate atmospheric Reynolds numbers
- It's therefore critical that we understand the importance of this parameter (from experiments, theory, etc.)

* High end DNS is 4096³, corresponding to $R_{\lambda} \sim 1000$ Gotoh & Fukayama (2001)

Limiting theories for collision

Saffman and Turner (1956) Zero Stokes number:

$$N_{c} = \frac{1}{2} n^{2} d^{3} \left(\frac{8\pi}{15} \frac{\varepsilon}{\nu}\right)^{1/2}$$

Brunk, Koch & Lion (1998) Wang, Wexler and Zhou (1998) Abrahamson (1975) Infinite Stokes number:

$$N_{c} = \frac{1}{2} n^{2} d^{2} \left(\frac{16\pi \overline{v_{p}^{2}}}{3} \right)^{1/2}$$

 $\frac{n}{v_p^2}$ number density particle kinetic energy

Reade & Collins (1998)

Collision vs Stokes number

Sundaram & Collins (1997)

Copyright Lance Collins, 2003

General collision formula

$$N_{c} = \pi d_{ij}^{2} n_{i} n_{j} g_{ij}(d_{ij}) \int_{-\infty}^{0} (-w) P_{ij}(w | d_{ij}) dw$$

 $d_{ij} = (d_i + d_j)/2$ $g_{ij}(r) = \text{radial distribution function (RDF)}$ w = relative velocityP(w | r) = PDF of relative velocity

RDF corrects for preferential concentration (dominant effect at low Stokes numbers)

Sundaram & Collins (1997) Wang, Wexler and Zhou (1998)

Parametric Dependence

- volume fraction
- Stokes number
- size parameter
- Reynolds number

RDF $g(r) \equiv \frac{\# \text{ pairs}}{\text{expected } \# \text{ pairs}}$

Stokes number dependence

Bi-disperse St dependence

Suppression of off-diagonal collisions broadens the distribution

Size parameter

Recent Theoretical Developments

Chun et al. (2003) St<<1

$$\frac{\partial g}{\partial t} = -\frac{1}{r^2} \frac{\partial (r^2 A r g)}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 B r^2 \frac{\partial g}{\partial r} \right]$$

$$A = \frac{St}{3 \tau_{\eta}} \left(\left\{ S^2 \right\}_p - \left\langle R^2 \right\rangle_p \right) \quad \text{nonlocal diffusion}$$

$$\frac{\Delta \left\langle S^2 \right\rangle_p}{St} = \left[\frac{\sigma_{\varepsilon}^2}{\varepsilon^2} T_{\varepsilon\varepsilon} - \frac{\rho_{\varepsilon\varsigma} \sigma_{\varepsilon} \sigma_{\varsigma}}{\varepsilon^2} T_{\varepsilon\varsigma} \right] , \quad \frac{\Delta \left\langle R^2 \right\rangle_p}{St} = \left[\frac{\rho_{\varepsilon\varsigma} \sigma_{\varepsilon} \sigma_{\varsigma}}{\varepsilon^2} T_{\varsigma\varepsilon} - \frac{\sigma_{\varsigma}^2}{\varepsilon^2} T_{\varsigma\varsigma} \right]$$

Steady State

 $g(r) = c_0 \left(\frac{\eta}{r}\right)^{c_1}$

$$c_{1} = A / B = 6.6 St^{2}$$
$$c_{1} = 3.6 St \left(\left\langle S^{2} \right\rangle_{p} - \left\langle R^{2} \right\rangle_{p} \right)$$

St	DNS	Stoch	Theory
0.05	0.016	0.016	0.017
0.1	0.08	0.07	0.06
0.15	0.15	0.14	0.14
0.2	0.19	0.18	0.17

Chun et al. (2003) Bidisperse

Fluid accelerations give rise to relative diffusion

$$g_{AB}(r) = c_0 \left[\frac{\eta^2}{r^2 + r_c^2} \right]^{c_1/2}$$

$$r_c = B' \left| St_A - St_B \right| \eta$$

Copyright Lance Collins, 2003

Reynolds Number Dependence

$$c_1 = 3.6 \; St \left(\left\langle S^2 \right\rangle_p - \left\langle R^2 \right\rangle_p \right)$$

Experimental 3D Particle Imaging Professor Hui Meng

- Cover a Broader Range of R_{λ}
- Validate DNS and Theory

Holtzer & Collins (2002)

Preliminary Results

Particle Tracking Eberhard Bodenschatz and Zellman Warhaft

Wind Tunnel (active grid)

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Track droplets
 Multiple (4) cameras

High speed (above 50,000 fps) Integral time and length scales

 Measure accelerations Compare with DNS Test theoretical predictions

Droplets 10 - 50 microns

Summary

Particle clustering in turbulent flows

- Increases collision frequency 1-2 orders of magnitude
- Strongly favors like collisions; broadens particle size distribution

Theoretical predictions for RDF

- Stokes number dependence
- Size parameter
- Reynolds number dependence remains in dispute (key for cloud physics)

Experiments

- Validate DNS and theory
- Increase the range of Reynolds numbers

Enabling Technologies

- 3D imaging essential
- Holographic imaging (RDF at an instant)
- High-Speed Stereoscopic Tracking (Lagrangian statistics)

DNS has continuously guided theoretical and experimental work

Acknowledgments

Colleagues

- Prof. Hui Meng (SUNY-Buffalo)
- Prof. Don Koch (Cornell)
- Prof. E. Bodenschatz
- Prof. Z. Warhaft
- Prof. R. Shaw (Mich. Tech)
- Prof. M. Loewenberg (Yale)

Grad Students and Postdoc

- S. Sundaram (CFD Research)
- W. Reade (Kimberly Clark)
- A. Keswani (Goldman Sachs)
- A. Ahluwalia (Epic Sys.)
- S. Rani

Undergraduate Students

- Carolyn Nestleroth
- Melissa Feeney
- Anthony Fick

CTS-9417527 PHY-0216406

Future Work

- High-resolution DNS (JC.001)
 - Effect of shear flow
 - Hydrodynamic interactions
- Extend theory to coalescing system
- Experimental measurements
 - HPIV at an instant
 - Lagrangian statistics

