

Margination of a leukocyte in a model microvessel

Jonathan B. Freund

Mechanical Science & Engineering University of Illinois at Urbana-Champaign

- Leukocyte (white cell) recruitment to endothelium
 - typically in post-capillary venules ($\sim 10 \mu m$ to $\sim 100 \mu m$)

• followed by *emigration* between endothelial cells

Copyright J. B. Freund, 2008

Usually it's a good thing: fighting infection, *etc.*

Usually it's a good thing: fighting infection, *etc.*

- but it can be a bad thing ...
 - Rheumatoid arthritis
 - Multiple sclerosis
 - Atherosclerosis
 - Ischemia reperfusion

- Biochemistry/molecular biophysics well studied
- Binding in two stages
 - rolling capture stage by *selectin* binding
 - *chemoattractants* from endothelium activate *integrin*
 - immobilization by *integrin* binding

Hydrodynamics

Multiple stages involve hydrodynamics

- Margination
 - the transport of the leukocyte to the wall
 - not a simple Stokes flow effect
 - leukocytes are rigid (symmetric)
 - must involve multi-body flow dynamics

Adhesion

- must resist flow
- interactions with red cells probably important

Hydrodynamic Effects

On-wall probability sensitive to shear rate (flow rate)

Abbitt & Nash (2001) *in vitro*: channel flow Firrell & Lipowsky (1989) *in vivo*: rat mesentery

Mechanism?

- At low strain rates, RBCs aggregate (in "athletic" species)
- RBC aggregation augmentation promotes margination/adhesion
 - Pearson & Lipowsky (2000), *in vivo* experiments, rat mesentery
 - Abbitt & Nash (2003), in vitro experiments
- Is aggregation necessary?
 - Direct observations do not suggest significant agg. needed
 - But 50kDa dextran (Dx50), which inhibits aggregation, still decreases adhesion (Pearson & Lipowsky 2000)???

Background: the F-L effect

- Mey microcirculation feature: Fåræus-Lindqvist effect
 - RBCs cluster toward vessel center
 - Reduced net resistance relative to Poiseuille flow

Background: the F-L effect

- Key microcirculation feature: Fåræus-Lindqvist effect
 - RBCs cluster toward vessel center
 - Reduced net resistance relative to Poiseuille flow

Background: the F-L effect

- Sey microcirculation feature: Fåræus-Lindqvist effect
 - RBCs cluster toward vessel center
 - Reduced net resistance relative to Poiseuille flow

Leukocyte margination seems counter to F-L effect

Questions Summary

- Do hydrodynamics alone marginate? Aggregation necessary?
- Dependence on RBC flexibility?

- Source of shear-rate/flow-rate dependence?
- Role of cell-free F-L layer?
- Mechanisms for Dx50 adhesion inhibition?

- Blood: cellular suspension in Stokes flow
- Matched interior/exterior cell viscosity
- Two dimensional

- Blood: cellular suspension in Stokes flow
- Matched interior/exterior cell viscosity
- Two dimensional

- Not a quantitative model of the microcirculation but...
 - includes several key components
 - will reproduce key phenomena

- Finite-deformation massless shell model for cell walls
 - reasonable model for RBCs very simple cells
 - linear constitutive model

$$m = M(\kappa - \kappa_o) \qquad \tau = T\left(\frac{ds}{ds_o} - 1\right)$$

membrane traction on fluid

$$\Delta \boldsymbol{\sigma} = \frac{\partial \mathbf{t}\tau}{\partial s} + \frac{\partial}{\partial s} \left(\frac{\partial m}{\partial s}\mathbf{n}\right)$$

- *m* bending moment
- M bending modulus
- κ curvature
- κ_o reference curvature

- au tension
- T tension modulus
- s arc length
- s_o referential arc length

Boundary Integral Formulation

Boundary integral formulation (*e.g.* Pozrikidis *et al.*)

$$u_j(\mathbf{x}) = U_{\infty} + \frac{1}{(4\pi\mu)} \int_{\Omega} \Delta\sigma_j(\mathbf{y}(s)) S_{ij}(\mathbf{x}(s) - \mathbf{y}(s)) \, ds$$

- Ω all surfaces
- $\Delta \sigma_j$ *j*-th component of membrane traction
- S_{ij} fundamental solution for Stokes operator

Surface Discretization

- Evenly spaced points in referential s_o coordinate: $\mathbf{x}^m = \mathbf{x}(s_o^m)$
- Assume \mathbf{x}^m are interpolated by harmonics

$$\mathbf{x}^m = \sum_{l=-N/2}^{N/2-1} \hat{\mathbf{x}}^l e^{ik_l s_o^m}$$

- Efficient for given accuracy for smooth shapes
- Dealiasing
- Consistent accurate quadratures: $N_a > N$
 - integrand harder to resolve than cell shape
 - \bullet only N restricts time step

Fast Particle-Mesh Methods

- Particle-Mesh-Ewald (PME) or Particle-Part./Particle-Mesh (P³M)
 - Darden *et al.* (1993), Essmann *et al.* (1995), Metsi (2000),
 Saintillan *et al.* (2005), Hockney & Eastwood (1988)
- FFTs on mesh: $O(N \log N)$ relatively small coefficient
- Significantly faster than multipole methods for typical N
- Standard for electrostatics in molecular biophysics codes

Configuration and Cases

Copyright J. B. Freund, 2008

Flow Configuration

Parameters

Fixed, anticipated important

- r_{ℓ} leukocyte radius
- r_o **RBC** initial radius
- ℓ_o RBC reference length
- ρ hematocrit (0.45, 0.33, 0.20)
- μ viscosity
- W channel width

Fixed, anticipated unimportant for selected values

- M_{ℓ} leukocyte moment modulus
- T_{ℓ} leukocyte tension modulus
- *L* channel length

• Varied

 $\begin{array}{ll} M & \mbox{RBC moment modulus} \\ T & \mbox{RBC tension modulus} \\ U_{\infty} & \mbox{driving flow} \end{array}$

Constant Groups

$$r_o^2 \frac{T}{M} = 50$$
 [100] RBC property
 $\frac{\ell_o}{r_o} = 1.6(2\pi)$ RBC property
 $\frac{r_\ell}{r_o} = 1.75$ leukocyte radius
 $\frac{L}{r_o} = 27$ channel length
 $\frac{W}{r_o} = 7.8$ channel width

Time Scales (Variable)

Advection:

 $\tau_{\rm adv} = \frac{r_o}{U_m}$

Shear:

$$\tau_{\rm sh} = \frac{1}{\sigma_m}$$
 where $\sigma_m = \frac{du}{dy}\Big|_w$

Selaxation:

$$\tau_{\rm rlx} = \frac{\mu r_o}{T}$$

Case	$\frac{\mu U^{\infty}}{T}$	$\frac{\tau_{\rm rlx}}{\tau_{\rm sh}} = \frac{\mu r_o \sigma_m}{T}$	$\frac{\tau_{\text{rlx}}}{\tau_{\text{adv}}} = \frac{\mu \mathbf{u}_m}{T}$	$\frac{\tau_{\rm adv}}{\tau_{\rm sh}} = \frac{r_o \sigma_m}{\mathbf{u}_m}$	N	N_a
a1		0.120	0.109	1.10		
a2		0.120	0.106	1.13		
a3	0.80	0.115	0.100	1.15	32	128
a4		0.114	0.094	1.21		
a5		0.122	0.084	1.44		
b	0.6	0.090	0.077	1.16	32	128
С	0.4	0.060	0.039	1.45	32	128
d1		0.028	0.020	1.40		
d2	0.20	0.0281	0.017	1.64	20	80
d3		0.0245	0.014	1.73		
e	0.067	0.0073	0.0036	2.02	20	80
f1		0.0055	0.0040	1.36	16	64
f2	0.05	0.0057	0.0037	1.54	16	64
f 3		0.0053 _{Copyri}	ght J. B. Freund, 2008	1.64	20	80 J. B. Freund – p.21/4

Basic Results

Copyright J. B. Freund, 2008

Visualizations/Animations

J. B. Freund – p.23/40

Mean Velocity Profile

Copyright J. B. Freund, 2008

Velocity Profile Bluntness

Leukocyte Path: M, T = consts

Faster, Constant T and M

J. B. Freund – p.26/40

Leukocyte Path: M, T = consts

J. B. Freund – p.26/40

Near-Wall Probability

• Probability $d < d_c = 0.4r_o$:

Qualitatively similar to experiments

Copyright J. B. Freund, 2008

Near-Wall Probability

- Insensitive to RBC stiffness
- Sensitive to profile bluntness...?

Most Probable Luk. Location

 $\tau_{\rm rlx}/\tau_{\rm adv} = \mu u_m/T = 0.0036; 0.017; 0.039; 0.077; 0.11$ Constant cell properties

Leukocyte sits at edge of cell free layer

Copyright J. B. Freund, 2008

Cell Free Layer Thickness

• Lubrication scaling $d \sim \sqrt{u}$ for constant "force"?

Cell Free Layer Thickness

• Why is leukocyte at same height?

3D

H. Zhao, A. Isfahani, J. B. Freund

Mechanical Science & Engineering University of Illinois at Urbana-Champaign

- Spherical harmonics with dealising
- GMRES for mismatched viscosity implicit system

Deformation Relaxation

 Relaxation times with expected bending moduli match experiments of Bronkhorst *et al*.

Cellular flow in cylindrical tubes III ILLINOIS

 $D = 11.4 \mu m$ $H_T = 30\%$

 $D = 20.0 \mu m$ $H_T = 30\%$

S

Effective Viscosity

Complex Geometries

Conclusions

- More probable on-wall corresponds to longer periods on-wall
- Margination does not require RBC agglomeration
- Relatively insensitive to RBC stiffness
- Leukocyte most probably at edge of cell-free layer
- Cell-free layer thickness scales nearly as \sqrt{u} .
 - Lubrication with constant wall-ward force?
- Emerging Picture: lubrication forces lift RBC putting leukocyte into less stable configuration
 - consistent with Dx50, which increases μ plasma
- 3D: preliminary validations underway

Role of Leukocyte Flexibility

Leukocyte three time stiffer than leukocyte

Insensitive to (small) leukocyte flexibility

Lubrication forces lift RBC destabilizing leukocyte

Copyright J. B. Freund, 2008