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Vortex Rings

A Secondary Eruption of Mt. St. Helens, June 1980 [photo by Robert P. VanNatta]
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1.5 mm long

(100 mieron)
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Previous Work on Vortex Rings

e Early work: Helmholtz (1858), Kelvin (1869)

e Existence: Hill (1894), Fraenkel (1972), Norbury
(1973), and others

e Formation: Saffman (1975, 1978), Pullin (1979),
Didden (1979), Glezer (1987)

e Evolution and Turbulent rings: Maxworthy (1972,
1974, 1977), Glezer (1987), and others

Fully-Pulsed Jets:

e Bremhorst et a/. (e.g., 1979, 1990, and 2000)
e Weihs (1977)

Copyright M Gharib, 2004



Classical View

Vortex ring “...formation is a problem of vortex
sheet dynamics, the steady state Is a problem
of existence, their duration is a problem of
stability, and if there are several we have a
problem of vortex interactions.”

-- P.G. Saffman (1981), emphasis added
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“New” Motivations

Understanding complicated biological flows: ~’%
» Aquatic Propulsion | -
« Cardiac Flows “ il

Practical Applications:
» Hydropropulsion /Aeropropulsion
e Micro jet thrusters
e Multi-scale Stirring and Mixing —

J 1
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Canonical Vortex Ring
Generator

Vortex rings can be easily generated using a piston-cylinder
mechanism to produce a starting jet.
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Parameters: _ _ Can be viewed as the roll up of
a) Time history of piston velocity a half-"infinite” cylindrical
b) L/D vortex sheet.

c) Reynolds Number
d) Orifice/nozzle Geometry
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Vortex Ring Formation

P.S. Krueger, J.O. Dabiri and M. Gharib (2003) Copyright M Gharib, 2004



Vortex Ring Formation
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Vortex Ring Experiments

Glezer (19s81)

Didden (1979

Kwon and Bernal (71989
Auerbach (19s0)

Schatzle (19s87)

Weigand and Gharib (7994
Maxworthy (1977)

Sallet (1974

L/D<1
L/D<2
L/D<4
L/D<1
L/D<1
L/D<1
L/D<3

L/D<1
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Can we generate arbitrarily large vortex rings?

_j U(T)dT D
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Can we generate arbitrarily large vortex rings?
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Can we generate arbitrarily large vortex rings?

- : @ <—L/D:_j-U(r)dr D
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Can we generate arbitrarily large vortex rings?

_j- U(T)dT D
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( 4 - - - \
Vortex ring formation time

Vortex pinch - off time
. - J
M. Gharib, E. Rambod & K. Shariff, Journal of Fluid Mechanics (1998) Copyright M Gharib, 2004




L/D =2vs. 4

L/D =2

L/D >4

P.S. Krueger (2001) Copyright M Gharib, 2004



The Formation Number (F )

Formation Time «— U, ¢/D = L/D
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Models for Vortex Ring Pinch-off

e Gharib et al (1998): invokes Kelvin-Benjamin
Variational principle

Vortex ring pinch off “...occurs when the
source energy falls below that of a steadily
translating vortex ring”

__JET— Vortex

Uj <Uyv @

M. Shusser and M. Gharib, Physics of Fluids (2000)
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Vortex ring growth is
limited by energy effects

For vortex ring growth: vortex generator energy > vortex ring energy
(W.T. Kelvin, 1875; T.B. Benjamin 1976)

A
E
L Elp 3
dimensionless \/([/p)F
energy
>
L/D
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Vortex ring growth is
limited by energy effects

For vortex ring growth: vortex generator energy > vortex ring energy
(W.T. Kelvin, 1875; T.B. Benjamin 1976)

A

dimensionless
energy

steady vortex ring energy

L/D
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Vortex ring growth is
limited by energy effects

For vortex ring growth: vortex generator energy > vortex ring energy
(W.T. Kelvin, 1875; T.B. Benjamin 1976)

A

vortex generator energy

dimensionless
energy

steady vortex ring energy

L/D
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Vortex ring growth is
limited by energy effects

For vortex ring growth: vortex generator energy > vortex ring energy
(W.T. Kelvin, 1875; T.B. Benjamin 1976)

A

vortex generator energy

dimensionless
energy

L/ID=4

steady vortex ring energy

—

vortex ring growth >I trailing jet formation —p >

L/D

M. Gharib, E. Rambod & K. Shariff, Journal of Fluid Mechanics (1998) Copyright M Gharib, 2004



Models for Vortex Ring Pinch-off
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Models for Vortex Ring Pinch-off

e Mohseni (1998): combines Norbury vortex model and
slug model approximation for ring translational velocity

U, = 0.9Y,,

vortex piston

e Linden and Turner (2001): combines Norbury vortex
model and volume conservation approximation

Q. =Q

‘Je vortex
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Models for Vortex Ring Pinch-off

e Mohseni (1998): combines Norbury vortex model and
slug model approximation for ring translational velocity

U, = 0.9y,

vortex piston

e Linden and Turner (2001): combines Norbury vortex
model and volume conservation approximation

Qjet = Q

vortex

However, entrained fluid by the leading vortex can
reach over 50 percent of its total volume (Q ;.. )

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (2004)
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Physical Implications of Pinch-Off

Pinch-Off — Maximum vortex ring strength (energy)

= Maximum fluid entrainment per vortex ring
and maximum vortex ring velocity

= Maximum thrust per pulse

()
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Total Impulse of Starting Jets
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Average Force of Starting Jets
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Added and Entrained Mass

Entrained
Fluid

/ “— N
— \—* “Added Mass” |
| — ._’\ ?
— —
Ejected —

“Vortex Bubble” Fluid

[ L/D=2.0, NS Ramp]
+ madded ) W

w<lI,

IU +Ip — (mejected +m

entrained

Experiments = m

ejected

P.S. Krueger and M. Gharib, Physics of Fluids (2003) Copyright M Gharib, 2004



Limiting physical processes dictate “optimal”
parameters for vortex ring formation

Experiments demonstrate correlation between vortex ring pinch-off and
maximum mass and momentum transfer

Copyright M Gharib, 2004



Do biological systems exploit vortex ring
formation for optimal fluid transport?

Copyright M Gharib, 2004



Do biological systems exploit vortex ring
formation for optimal fluid transport?

P -
DE3q=23515
Z9miniee

B. Lin and M. Gharib (2003) J.O. Dabiri et al. (2004)
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Previous attempts to verify optimal vortex formation

In biological systems have been inconclusive

Head Mantle

Fin

Mantle cavity

Funnel
Jet —

: orifice e e
Anterior Posteriol
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0

N

J

|.K. Bartol et al., Journal of Experimental Biology (2001)
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Previous attempts to verify optimal vortex formation
In biological systems have been inconclusive
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Previous attempts to verify optimal vortex formation
In biological systems have been inconclusive

Measurements in the literature...
Squid:  L/D =4-7, 10-40, 34, 87

Salps:  L/D =3-4, 6.7, 10-20
Jellyfish: L/D =0.2-4.4

[ Are we missing something? J
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Biological Factors Affecting
Pinch-off

e Co-flow
Swimming and flying animals generate vortices
In a free-stream flow

Copyright M Gharib, 2004



Biological Factors Affecting
Pinch-off

e Co-flow
Swimming and flying animals generate vortices
In a free-stream flow

e Temporal exit diameter variation
e.g. squid (Bartol et al., 2001)
Parallels time-dependent flap kinematics in other
locomotion modes

0.6
0.5 1
0.4 4
0.3 1
0.2+
0.1

Funnel diameter (cm)

(R

0 0.25 0.5 0.75 1 1.25 1.5 1.75
004



A proper analysis must include
fluid-structure interactions

External interactions: Flow past the vortex generator

—>
R OE=—=
——>
—>
—>

Swimming direction

e ——

Flow past the propulsor can affect
vortex ring formation

P.S. Krueger, J.O. Dabiri and M. Gharib, Physics of Fluids (2003) Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

External interactions: Flow past the vortex generator

;| Plexiglass Shroud

Vortex Ring
Generator

|

Ve(?)

N
<«

4
> 4.875 D

¢
’ ]
) D =1.25"
Piston / °
D=1" —

P.S. Krueger, J.O. Dabiri and M. Gharib, Physics of Fluids (2003) Copyright M Gharib, 2004



Effects of Co-flow

e Up=114cm/s

m Up =5.5¢cm/s

1| F= (UexternaI+Ujet)T/D
" Rv = UexternaI/ Ujet

0 0.2 0.4 0.6 0.8 1
Ry

P.S. Krueger, J.O. Dabiri and M. Gharib, Physics of Fluids (2003) Copyright M Gharib, 2004




Effects of Co-flow

"/

Bartol et al., 2001

I
I
I
! N !

e Up=11.4cm/s

m Up =5.5cm/s

Dabiri et al., 2004 |
I V\

0.2 0.4

Ry

0.6 0.8 1
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Effects of Co-flow

Animals can exploit
external flow in other
flow-related functions

(l.e. feeding and
maneuvering)

| feeding via
= vortex ring fluid
entrainment

See Gallery of Fluid Motion
Video #14 (Dabiri et al.)

Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

Possible effects

1) As a source of additional vorticity

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

Possible effects

1) As a source of additional vorticity

2) As a manipulator of existing vorticity

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

Possible effects

1) As a source of additional vorticity

2) As a manipulator of existing vorticity

These effects are obscured when the time-dependent
D(t) is replaced by D

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A new technique replicates fluid-structure
Interactions in variable-diameter jet flows

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A new technique replicates fluid-structure

cotter pin
support spars (16)

maximum
diameter

minimum
diameter elastic nozzle

(latex rubber)

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A new technique replicates fluid-structure
Interactions in variable-diameter jet flows

0.7

0.65

0.4

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear)
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A new index for vortex formation properly
accounts for time-dependent boundary conditions

"DYNAMIC FORMATION TIME”"

Increase the vortex formation time incrementally:

A(L/ D} = (U(r)/D(z))Az

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A new index for vortex formation properly
accounts for time-dependent boundary conditions

"DYNAMIC FORMATION TIME”"

Increase the vortex formation time incrementally:
A(L/DJ=(U(r)/D(r))A7

Integrating from flow initiation at z = O to flow termination at z = #:

(1/DY = [ (U(e)/ D))

\

J

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



Nondimensional Analysis

e Normalized Circulation
T D)
UZ

e

e Normalized Time

T* :er(T)dT — /Ue \Jt
ODe(T) \De/

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004




Vortex formation time is unaffected by
temporal increases in jet diameter

e (L/D)*=4.0+0.5for all dD(t)/dt > O tested

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004
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Vortex formation time is unaffected by
temporal increases in jet diameter

e (L/D)*=4.0+ 0.5 for all dD(t)/dt > O tested

 However impulse I ~ IXxde Increases with dD(t)/dt

down
stream

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



Vortex formation time is unaffected by
temporal increases in jet diameter

 (L/D)*=4.0=+ 0.5 for all dD(t)/dt > O tested

 However impulse I ~ IXxde Increases with dD(t)/dt

down
stream

Vortex ring
\ —>A

D()

Trailing jet

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



Vortex formation time is unaffected by
temporal increases in jet diameter

I~ I X x odV
down
stream
Vortex ring
\ > A== & =
154

D()

origin I R
—- .
—_—— e - - piston
=U =2A
—i ~
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/

Trailing jet

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear)
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4:
2

1 (L/D)<4 D

(J.0. Dabiri & M. Gharib, J Fluid Mech)

J.O. Dabiri and M. Gharib, Proceedings of the Royal Society B (submitted)  copyright M Gharib, 2004



These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4:

1 (L/DY<4 D’

(J.O. Dabiri & M. Gharib, J Fluid Mech)

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)
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These results suggest the first set of
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During fluid ejection at (L/D)* < 4:
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(J.O. Dabiri & M. Gharib, J Fluid Mech)
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with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)

During fluid ejection at (L/D)* > 4:
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4: _
Gransport f|UI5

with dD(t)/dt > 0

1 (L/DY<4 D’

(J.0. Dabiri & M. Gharib, J Fluid Mech)

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)

During fluid ejection at (L/D)* > 4.

1 (L/Dy>4 D™

(J.0. Dabiri & M. Gharib, J Fluid Mech)
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4: _
Transport fluid
with dD(t)/dt > 0

1 (L/DY<4 D’

(J.0. Dabiri & M. Gharib, J Fluid Mech)

5
(@)

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)

During fluid ejection at (L/D)* > 4.

1 (L/Dy>4 D™

(J.0. Dabiri & M. Gharib, J Fluid Mech)
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4: _
Transport fluid
with dD(t)/dt > 0

1 (L/DY<4 D’

(J.0. Dabiri & M. Gharib, J Fluid Mech)

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)

yes

Transport
complete?

During fluid ejection at (L/D)* > 4.

1 (L/Dy>4 D™

(J.0. Dabiri & M. Gharib, J Fluid Mech)
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4:

1 (L/DY<4 D’

(J.O. Dabiri & M. Gharib, J Fluid Mech)

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency
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During fluid ejection at (L/D)* > 4.
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4: _ _
Transport fluid | Transport fluid
with dD(t)/dt > 0 with dD(t)/dt <0

1 (L/DY<4 D’

(J.O. Dabiri & M. Gharib, J Fluid Mech)

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)

yes

Transport
complete?

During fluid ejection at (L/D)* > 4:

yes

Y

I(L/D)*>4 ~D™ ( Efficiency )

(J.0. Dabiri & M. Gharib, J Fluid Mech) maximized
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4: _ _

Transport fluid | Transport fluid

I - D2 with dD(t)/dt >0 with dD(t)/dt <0
(L/D y+<4

(J.O. Dabiri & M. Gharib, J Fluid Mech)

A

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)

yes

Transport
complete?

Transport
complete?

During fluid ejection at (L/D)* > 4:

yes

Y

I(L/D)*>4 ~D™ ( Efficiency )

(J.0. Dabiri & M. Gharib, J Fluid Mech) maximized
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These results suggest the first set of
engineering strategies for optimal fluid transport

During fluid ejection at (L/D)* < 4: _ _

Transport fluid | Transport fluid

I - D2 with dD(t)/dt >0 with dD(t)/dt <0
(L/D y+<4

(J.O. Dabiri & M. Gharib, J Fluid Mech)

A

If total vortex formation time
(L/D)* = 4, fluid is transported
with maximum efficiency

(P.S. Krueger & M. Gharib, Phys Fluids)

yes

Transport
complete?

Transport
complete?

During fluid ejection at (L/D)* > 4:

yes yes

—4
I(L/D)*>4 ~D Efficiency Impulse
maximized maximized

(J.O. Dabiri & M. Gharib, J Fluid Mech)
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Are these strategies observed in biological systems?

Animal swimming revisited

e Squid rely on jet flow for high-speed swimming and escaping predation

J.O. Dabiri and M. Gharib, Proceedings of the Royal Society B (submitted)  copyright M Gharib, 2004



Are these strategies observed in biological systems?

Animal swimming revisited

e Squid rely on jet flow for high-speed swimming and escaping predation
——> impulse maximization
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Are these strategies observed in biological systems?
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 The optimal ejection strategy depends on cardiac health
——> efficiency and/or impulse maximization
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Conclusions

Do biological systems exploit
vortex ring formation for optimal
fluid transport?
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Comments

The vortex ring motif studied here is not limited to jet-based fluid transport...

Flapping

birds (Rayner, 1988) fish (Drucker, 2000)

Undulating Paddling

Bn1

Bra
eels (Tytell, 2004) frogs (Johanssgn,:20Q0%)arib, 2004



Comments

...therefore, in order to better understand the physics and
evolutionary incentives behind other vortex-based
mechanisms, we need

To include realistic boundary and flow
conditions such as compliance and co-flow

To Iinvestigate physics of individual events of
vortex formation in the context of “Dynamic
Formation Time” rather than Strouhal
frequency
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