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Vortex Rings

A Secondary Eruption of Mt. St. Helens, June 1980 A Secondary Eruption of Mt. St. Helens, June 1980 [Photo by Robert P. [Photo by Robert P. VanNattaVanNatta]]
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ZebrafishZebrafish ((DanioDanio reriorerio))
EmbryoEmbryo

1.5 mm long

(100 micron)

Koster, Forouhar and Gharib (2002)



Previous Work on Vortex Rings
•• Early work:  Early work:  HelmholtzHelmholtz (1858), Kelvin (1869)(1858), Kelvin (1869)
•• Existence:  Hill (1894), Existence:  Hill (1894), FraenkelFraenkel (1972), (1972), NorburyNorbury

(1973), and others(1973), and others
•• Formation:  Formation:  SaffmanSaffman (1975, 1978), Pullin (1979), (1975, 1978), Pullin (1979), 

DiddenDidden (1979), (1979), GlezerGlezer (1987)(1987)
•• Evolution and Turbulent rings:  Evolution and Turbulent rings:  MaxworthyMaxworthy (1972, (1972, 

1974, 1977), 1974, 1977), GlezerGlezer (1987), and others(1987), and others

•• BremhorstBremhorst et al.et al. (e.g., 1979, 1990, and 2000)(e.g., 1979, 1990, and 2000)
•• Weihs (1977)Weihs (1977)

FullyFully--Pulsed Jets:Pulsed Jets:
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Classical View

Vortex ring “…formation is a problem of Vortex ring “…formation is a problem of vortex vortex 
sheet dynamicssheet dynamics, the steady state is a problem , the steady state is a problem 
of of existenceexistence, their duration is a problem of , their duration is a problem of 
stabilitystability, and if there are several we have a , and if there are several we have a 
problem of vortex problem of vortex interactionsinteractions.”.”

---- P.G. P.G. SaffmanSaffman (1981), emphasis added(1981), emphasis added
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“New” Motivations

Understanding complicated biological flowsUnderstanding complicated biological flows::
•• Aquatic PropulsionAquatic Propulsion
•• Cardiac FlowsCardiac Flows

Practical ApplicationsPractical Applications::
•• HydropropulsionHydropropulsion //AeropropulsionAeropropulsion
•• Micro jet thrusters Micro jet thrusters 
•• MultiMulti--scale Stirring and Mixingscale Stirring and Mixing
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Canonical Vortex Ring 
Generator

Vortex rings can be easily generated using a pistonVortex rings can be easily generated using a piston--cylinder cylinder 
mechanism to produce a starting jet.mechanism to produce a starting jet.

Can be viewed as the roll up of Can be viewed as the roll up of 
a halfa half--”infinite” cylindrical ”infinite” cylindrical 
vortex sheet.vortex sheet.

⇒
L

D

Parameters:Parameters:
a)  Time history of piston velocitya)  Time history of piston velocity
b)  L/Db)  L/D
c)  Reynolds Numberc)  Reynolds Number
d)  Orifice/nozzle Geometryd)  Orifice/nozzle Geometry
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Vortex Ring FormationVortex Ring Formation

Copyright M Gharib, 2004P.S. Krueger, J.O. Dabiri and M. Gharib (2003)



Vortex Ring FormationVortex Ring Formation
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Vortex Ring Experiments

Glezer (1981) L/D<1

Didden (1979) L/D<2

Kwon and Bernal (1989) L/D<4

Auerbach (1980) L/D<1

Schatzle (1987) L/D<1

Weigand and Gharib (1994) L/D<1

Maxworthy (1977) L/D<3

Sallet (1974) L/D<1
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Can we generate arbitrarily large vortex rings?
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M. Gharib, E. Rambod & K. Shariff, Journal of Fluid Mechanics (1998) Copyright M Gharib, 2004
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Can we generate arbitrarily large vortex rings?
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L/D = 2 vs. 4 

u J
/U

u J
/U

L/D = 2L/D = 2

L/D > 4L/D > 4

P.S. Krueger (2001) Copyright M Gharib, 2004
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DLDtU p =Formation Time

M. Gharib, E. Rambod & K. Shariff, Journal of Fluid Mechanics (1998) Copyright M Gharib, 2004



Models for Vortex Ring Pinch-off
•• Gharib Gharib et alet al. (1998): . (1998): invokes Kelvininvokes Kelvin--Benjamin Benjamin 

VariationalVariational principleprinciple

Vortex ring pinch off “...occurs when the Vortex ring pinch off “...occurs when the 
source energy falls below that of a steadily source energy falls below that of a steadily 

translating vortex ring”translating vortex ring”

JET Vortex

Uj < Uv

M. Shusser and M. Gharib, Physics of Fluids (2000)
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Vortex ring growth is
limited by energy effects

For vortex ring growth:  vortex generator energy > vortex ring energy  
(W.T. Kelvin, 1875; T.B. Benjamin 1976)

Copyright M Gharib, 2004M. Gharib, E. Rambod & K. Shariff, Journal of Fluid Mechanics (1998)
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Vortex ring growth is
limited by energy effects

For vortex ring growth:  vortex generator energy > vortex ring energy  
(W.T. Kelvin, 1875; T.B. Benjamin 1976)

steady vortex ring energy

vortex generator energy
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energy
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Vortex ring growth is
limited by energy effects

For vortex ring growth:  vortex generator energy > vortex ring energy  
(W.T. Kelvin, 1875; T.B. Benjamin 1976)

steady vortex ring energy

vortex generator energy

L/D ≈ 4

vortex ring growth trailing jet formation

dimensionless
energy

L/D

M. Gharib, E. Rambod & K. Shariff, Journal of Fluid Mechanics (1998) Copyright M Gharib, 2004



Models for Vortex Ring Pinch-off
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Models for Vortex Ring Pinch-off

•• MohseniMohseni (1998): combines (1998): combines Norbury vortex modelNorbury vortex model and and 
slug model approximation for slug model approximation for ring translational velocityring translational velocity

UUvortexvortex = 0.5= 0.5UUpistonpiston

•• Linden and Turner (2001): combines Linden and Turner (2001): combines Norbury vortex Norbury vortex 
modelmodel and and volume conservationvolume conservation approximationapproximation

ΩΩjetjet = = ΩΩvortexvortex

Copyright M Gharib, 2004



Models for Vortex Ring Pinch-off

•• MohseniMohseni (1998): combines (1998): combines Norbury vortex modelNorbury vortex model and and 
slug model approximation for slug model approximation for ring translational velocityring translational velocity

UUvortexvortex = 0.5= 0.5UUpistonpiston

•• Linden and Turner (2001): combines Linden and Turner (2001): combines Norbury vortex Norbury vortex 
modelmodel and and volume conservationvolume conservation approximationapproximation

ΩΩjetjet = = ΩΩvortexvortex

However, entrained fluid  by the leading vortex can 
reach over 50 percent of its total volume (ΩΩvortex vortex )

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (2004)
Copyright M Gharib, 2004



Physical Implications of Pinch-Off

Pinch-Off Maximum vortex ring strength (energy)Maximum vortex ring strength (energy)⇒

⇒ Maximum fluid entrainment per vortex ringMaximum fluid entrainment per vortex ring
and maximum vortex ring velocityand maximum vortex ring velocity

⇒ Maximum thrust per pulseMaximum thrust per pulse

?
Copyright M Gharib, 2004



Total Impulse of Starting Jets
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Average Force of Starting Jets
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Added and Entrained Mass
W

“Added Mass”

“Vortex Bubble”
Ejected
Fluid

Entrained
Fluid

[ L/D = 2.0, NS Ramp]
( )WmmmII addedentrainedejectedpU ++=+

Uejected IWm <⇒ExperimentsExperiments

P.S. Krueger and M. Gharib, Physics of Fluids (2003) Copyright M Gharib, 2004



Limiting physical processes dictate “optimal” 
parameters for vortex ring formation

Experiments demonstrate correlation between vortex ring pinch-off and 
maximum mass and momentum transfer

Copyright M Gharib, 2004



Do biological systems exploit vortex ring 
formation for optimal fluid transport?

LA

LV

Copyright M Gharib, 2004



Do biological systems exploit vortex ring 
formation for optimal fluid transport?

RA

LV

B. Lin and M. Gharib (2003) J.O. Dabiri et al. (2004)
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Previous attempts to verify optimal vortex formation
in biological systems have been inconclusive

( )∫=→
t

ττD
t

DDLDL
0

1where d  

I.K. Bartol et al., Journal of Experimental Biology (2001) Copyright M Gharib, 2004



Previous attempts to verify optimal vortex formation
in biological systems have been inconclusive
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Previous attempts to verify optimal vortex formation
in biological systems have been inconclusive

Measurements in the literature…

Squid:       L/D = 4-7, 10-40, 34, 87

Salps:       L/D = 3-4, 6.7, 10-20

Jellyfish:   L/D = 0.2-4.4

Are we missing something?

Copyright M Gharib, 2004



Biological Factors Affecting 
Pinch-off

•• CoCo--flowflow
Swimming and flying animals generate vortices Swimming and flying animals generate vortices 

in a freein a free--stream flowstream flow

Copyright M Gharib, 2004
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Biological Factors Affecting 
Pinch-off

•• CoCo--flowflow
Swimming and flying animals generate vortices Swimming and flying animals generate vortices 

in a freein a free--stream flowstream flow

•• Temporal exit diameter variationTemporal exit diameter variation
e.g. squid (Bartol e.g. squid (Bartol et alet al., 2001)., 2001)

Parallels timeParallels time--dependent flap kinematics in other dependent flap kinematics in other 
locomotion modeslocomotion modes



A proper analysis must include
fluid-structure interactions

External interactions: Flow past the vortex generator

Flow past the propulsor can affect 
vortex ring formation

P.S. Krueger, J.O. Dabiri and M. Gharib, Physics of Fluids (2003) Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

External interactions: Flow past the vortex generator

P.S. Krueger, J.O. Dabiri and M. Gharib, Physics of Fluids (2003) Copyright M Gharib, 2004
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Effects of Co-flow
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Effects of Co-flow
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Effects of Co-flow

Animals can exploit Animals can exploit 
external flow in other external flow in other 
flowflow--related functions related functions 

(i.e. feeding and (i.e. feeding and 
maneuvering)maneuvering)

See Gallery of Fluid Motion See Gallery of Fluid Motion 
Video #14 (Dabiri et al.)Video #14 (Dabiri et al.)

feeding via 
vortex ring fluid 

entrainment

Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

Possible effects

1)   As  a source of additional vorticity

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

Possible effects

1)   As  a source of additional vorticity

2)   As a manipulator of existing vorticity
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A proper analysis must include
fluid-structure interactions

Internal interactions: Dynamical effects of a variable exit D(t)

Possible effects

1)   As  a source of additional vorticity

2)   As a manipulator of existing vorticity

These effects are obscured when the time-dependent
D(t) is replaced by D

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A new technique replicates fluid-structure 
interactions in variable-diameter jet flows

rotating drum
variable-diameter 

elastic nozzle

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A new technique replicates fluid-structure 
interactions in variable-diameter jet flows

Copyright M Gharib, 2004J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear)

rotating drum

pulley array

variable-diameter 
elastic nozzle



A new technique replicates fluid-structure 
interactions in variable-diameter jet flows

Copyright M Gharib, 2004J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear)



A new index for vortex formation properly
accounts for time-dependent boundary conditions

“DYNAMIC FORMATION TIME” 

Increase the vortex formation time incrementally:

( ) ( ) ( )( ) τττDL ∆≡∆ DU*

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



A new index for vortex formation properly
accounts for time-dependent boundary conditions

“DYNAMIC FORMATION TIME” 

Increase the vortex formation time incrementally:

( ) ( ) ( )( ) τττDL ∆≡∆ DU*

Integrating from flow initiation at τ = 0 to flow termination at τ = t:

( ) ( ) ( )( )∫=
t

τττDL
0

* dDU

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



Nondimensional Analysis
•• Normalized CirculationNormalized Circulation

•• Normalized TimeNormalized Time

( )
( )∫ ⎟⎟
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Udτ

τD
τUT*

e

e

e

e

( )
2
e

ee

U
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J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004



Vortex formation time is unaffected by
temporal increases in jet diameter

• (L/D)* = 4.0 ± 0.5 for all dD(t)/dt > 0 tested

J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear) Copyright M Gharib, 2004
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• However impulse ∫ ×

stream
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Vortex formation time is unaffected by
temporal increases in jet diameter

Copyright M Gharib, 2004J.O. Dabiri and M. Gharib, Journal of Fluid Mechanics (to appear)
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These results suggest the first set of 
engineering strategies for optimal fluid transport

( )
2

4* ~ DI DL <

J.O. Dabiri and M. Gharib, Proceedings of the Royal Society B (submitted)

During fluid ejection at (L/D)* < 4:

(J.O. Dabiri & M. Gharib, J Fluid Mech)
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These results suggest the first set of 
engineering strategies for optimal fluid transport

If total vortex formation time 
(L/D)* 4, fluid is transported
with maximum efficiency

( )
2

4* ~ DI DL <

J.O. Dabiri and M. Gharib, Proceedings of the Royal Society B (submitted)

During fluid ejection at (L/D)* < 4:

(J.O. Dabiri & M. Gharib, J Fluid Mech)

(P.S. Krueger & M. Gharib, Phys Fluids)
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These results suggest the first set of 
engineering strategies for optimal fluid transport

Transport fluid 
with dD(t)/dt > 0

If total vortex formation time 
(L/D)* 4, fluid is transported
with maximum efficiency

( )
4

4* ~ −
> DI DL

( )
2

4* ~ DI DL <

J.O. Dabiri and M. Gharib, Proceedings of the Royal Society B (submitted)

During fluid ejection at (L/D)* < 4:

(J.O. Dabiri & M. Gharib, J Fluid Mech)

(P.S. Krueger & M. Gharib, Phys Fluids)

(J.O. Dabiri & M. Gharib, J Fluid Mech)

(L/D)* = 4 ? no

During fluid ejection at (L/D)* > 4:
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These results suggest the first set of 
engineering strategies for optimal fluid transport
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Are these strategies observed in biological systems?
Animal swimming revisited

• Squid rely on jet flow for high-speed swimming and escaping predation

J.O. Dabiri and M. Gharib, Proceedings of the Royal Society B (submitted) Copyright M Gharib, 2004
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Conclusions

Do biological systems exploit 
vortex ring formation for optimal 

fluid transport?

Copyright M Gharib, 2004



Conclusions

Do biological systems exploit 

Yes, both mobile and 
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Comments
The vortex ring motif studied here is not limited to jet-based fluid transport…

Flapping

birds (Rayner, 1988) fish (Drucker, 2000)

Undulating Paddling

eels (Tytell, 2004) Copyright M Gharib, 2004frogs (Johansson, 2004)



Comments
…therefore, in order to better understand the physics and 
evolutionary incentives behind other vortex-based 
mechanisms, we need

To include realistic boundary and flow 
conditions such as compliance and co-flow

To investigate physics of individual events of 
vortex formation in the context of “Dynamic 

Formation Time” rather than Strouhal 
frequency
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