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“Nonlinear Dynamics” has deepened our 
understanding of fluid dynamics, and taught us 
many lessons about nonlinear phenomena.

No movies in this version; some may be found at 
www.haverford.edu/physics-astro/Gollub/lab.html
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Central Ideas from Nonlinear Dynamics
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Using phase space to describe fluid systems: 
mode amplitudes and their evolution.
Geometrical thinking: attracting and repelling 
fixed points; multiple attractors; limit cycle 
attractors; chaotic attractors representing 
nonperiodic flows.
Understanding instabilities as bifurcations or 
qualitative changes in the phase space of a system, 
e.g. birth or death of fixed points.



Central ideas - II
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Common features shared by disparate systems:
Supercritical vs. subcritical transitions
Bifurcation scenarios 
The central role of symmetry
Patterns and spatiotemporal chaos described by 
generic amplitude equations in large systems



A Few Examples
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The role of stretching in fluid mixing
Clustering of particles suspended in a liquid.
Nonlinear waves on fluid interfaces
Multiple stability in granular flow
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1.  Stretching and Fluid Mixing

Measuring fluid stretching 
can illuminate mixing and 
illustrate nonlinear 
dynamics.  

Greg Voth, George Haller, 
Greg Dobler, Tim Saint.  



Types of Fluid Mixing
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Turbulent mixing: Random structures produced 
by fluid instability at high Reynolds number Re 
stretch and fold fluid elements. 
Chaotic mixing: Some laminar flows at modest 
Re can produce complex distributions of material.  
Fundamental process:  Non-reversible stretching 
and folding of fluid elements, with diffusion at 
small scales.  Chaos in real space.



Background on Stretching in Chaotic Mixing
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Chaotic mixing has been well studied, and the 
importance of stretching was emphasized and 
investigated by J. Ottino and colleagues Khakhar, 
Swanson, and Muzzio.
Others (Rom-Kedar, Leonard, Wiggins) have 
illuminated the connection between nonlinear 
dynamics and mixing theoretically.
What is new in our work is the experimental 
measurement of space and time resolved 
stretching fields.



Apparatus:  
2D Magnetically Driven Fluid Layer
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Magnet Array

Electrodes

ft)sin(2 I(t) 0 πI=

Glycerol and water a few mm 
thick, containing fluorescent dye.

Periodic forcing:Top View:



Precise Particle Tracking
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~ 800 fluorescent 
particles tracked 
simultaneously.



Velocity Fields
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0.9 cm/sec

0

(p=5, Re=56)



Why Do Periodic Flows Mix?  
Breaking Time Reversal Symmetry
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To mix, the flow can be 
time periodic, but must not 
be time reversible:

relative to any starting time.
Finite Reynolds number
Re=VL/ν can break time 
reversal symmetry:

( ) ( )t t≠ − −V V

Velocity at equal intervals 
before and after the moment 
of minimum velocity. 



Breaking of Time Reversal Symmetry
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Structures in the Poincaré Map of the Flow
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Displacements in one 
period, color coded.
Hyperbolic Fixed Points

A small part (6%) of 
the flow.

Elliptic Fixed Points

0 cm 1.7 cm



Manifolds of Hyperbolic Fixed Points
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Unstable
Manifold

Stable
Manifold

Typical of 
Hamiltonian Chaos



Definition of Stretching
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Stretching = lim (L/L0)

L0

L
L0 0

Past Stretching Field:  Stretching that a 
fluid element has experienced during 
the last ∆t. (Large near unstable man.) 

Future Stretching Field:  Stretching that 
a fluid element will experience in the 
next ∆t.    (Large near stable man.)



Past Stretching Field
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Stretching is 
organized in sharp 
lines.

Re=45, p=1, ∆t=3



Future and Past Stretching Fields

Fluid Dynamics Prize Lecture – Copyright Jerry Gollub, 2003

Future Stretching 
Field (Blue) marks the 
stable manifold.

Past Stretching Field 
(Red) marks the 
unstable manifold.

Circles mark 
hyperbolic points. A 
“heteroclinic tangle”.



Understanding the Dye Concentration Field
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Unstable manifold (past stretching field) and 
the dye concentration field
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Lines of large past 
stretching (unstable 
manifold) are 
aligned with the 
contours of the 
concentration field.

This is true at 
every time (phase).



Stretching is Inhomogeneous:  PDF
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Stretching over one period
Log(stretching)
(Finite Time Lyap. Exp.)

Solid: Re=45, p=1, <λ>=1.9 per-1

Dotted:  Re=100, p=5, <λ>=6.4 per-1(Re=100,p=5)



Decay of the Dye Concentration Field
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Can Mixing Rates Be Predicted?
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Antonsen et al. predict the long time decay of 
concentration variance based on the prob. dist. 
P(h,t) of finite time Lyapunov exponents 
(stretching)
Using our measured P(h,t) and their theory, we 
predict mixing (variance decay) rates a factor of 
10 larger than is observed.  



Predicting Mixing Rates - (cont.)

Fluid Dynamics Prize Lecture – Copyright Jerry Gollub, 2003

Why is mixing so slow?  Large system  
Transport over long distances is important. 
Enhanced or “eddy” diffusion: By watching 
particles diffuse, we can succesfully predict the 
rate of decay of a scalar field.  



Future
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The onset of non-periodic flow (2D turbulence) 
does not dramatically change mixing rates, to our 
surprise.  
Are the main features of non-periodic mixing 
captured by the periodic case discussed here? 
What will be the topological properties of 
stretching fields for non-periodic flows?
Papers:  G.A. Voth et al, Phys. Rev. Lett. (2002)  
and Phys. Fluids (2003)



2.  Structure and Dynamics of Hydrodynamically
Mediated Particle Clusters 
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Fluid mediated  interactions 
between particles lead to forces 
between them.

A variety of tunable patterns 
are produced, including chaotic 
states.

Greg Voth, Charles Thomas, 
Ben Bigger, Mark Buckley, 
Michael Brenner, Howard 
Stone, and JPG.



Observations of Clustering
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f=50 Hz
Γ=4.5



Related Phenomena
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Sedimentation – when particles fall in a fluid, they 
influence each other.
Fluidized beds, widely used for catalysis.

Here:  An example of physical self-assembly of 
ordered particulate structures
Chaos in a system of interacting particles



Rayleigh Streaming
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Streaming flow for a particle in a fluid  - no boundary 
From Van Dyke, An Album of Fluid Motion



Origin of Long Range Attraction
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Rayleigh:  steady streaming flow away from poles 
and toward the equator generated outside the 
viscous boundary layer (0.2 mm) surrounding the 
particle. 
Predicted inflow velocity   

(via collaborators M. Brenner and H. Stone).
Particles follow this flow as they approach each 
other.
However, see Voth and Otto, KC004, Tuesday 
08:39

2 3( ) 0.53 /V r Aa rων= −



Approach Curves for 2 Particles

Fluid Dynamics Prize Lecture – Copyright Jerry Gollub, 2003

F=20 Hz; Γ=2.9; 
A=0.4 mm (periodic)

F=50 Hz; Γ=4.6; 
A=0.15 mm (chaotic)

•Dashed: theory;   Solid:experiments; 

t = 0 at end of approach.

•At higher excitation amplitude, the particles 
do not touch.  Repulsive force also.

-2 s 0.0 stime
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N=4, Γ=2.97.
(a) trajectories;  
(b) spacings vs. 

time. 
Note transitions.
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Trapezoidal Cluster - Chaotic Motion
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(a) Trajectories 
(Γ=2.96) 
(b) separations 
vs. time. 
Nonperiodic
oscillations.
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Main Conclusions - Interacting Particles
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Many different structures, ordered, disordered, 
chaotic
Observations suggest an effective interaction 
potential for two particles.  But pairwise
interactions do not suffice for many particles.
Large and small clusters behave differently. 
More:  Voth et al. PRL 88, 234301 (2002); C.C. 
Thomas & JPG, in preparation.



Complex wave patterns
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Quasicrystalline wave pattern
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Sheared Granular Flow
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Shearing induces order; order modifies 



Conclusions
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Ideas from nonlinear dynamics contribute to 
understanding fluid phenomena.
Equally, fluids illuminate nonlinear dynamics and 
can be used to teach it.
Fluids ought to play a larger role in physics 
teaching.  I make a case for this in Physics Today, 
December 2003:  “One of the oddities of 
contemporary physics education is the nearly 
complete absence of continuum mechanics…”
Movies:   www.haverford.edu/physics-
astro/Gollub/lab.html
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