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or

Optimal LES:

Trading in the Navier-Stokes Equations

for Custom Designed Discrete LES
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Large Eddy Simulation

Simulate only the largest scales of High-Reynolds number turbulence

• Models of small scales required

Numerous models developed recently

• E.g. scale similarity, dynamic, structure function, stretched vortex,

deconvolution

Difficulties remain

• Wall-bounded turbulence

• Impact of numerical discretization

LES is for making predictions!

• Predict (some) statistical properties of turbulence

• Predict large-scale dynamics of turbulence
copyright Robert D. Moser, 2003
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Optimal LES Development Map
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Filtering and LES

Filters precisely define the large scales to be simulated

• Not absolutely necessary, but useful

• Provides a framework in which to develop models

Two flavors of filtering and LES

• Continuously filtered LES

• Discretely filtered LES

copyright Robert D. Moser, 2003
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Continuous LES

Filter
→

Discretize
→

N-S Equations Model
→ LES PDE’s Numerics

→ Discretized LES

Many filters are invertible or nearly so (e.g. Gaussian)

A hypothetical exercise: suppose filter can be inverted

• Determine evolution by defiltering and advancing N-S

• Best “model” would be a DNS ⇒ DNS resolution

• Coarse resolution determines accuracy limits

• Best models must depend explicitly on discretization
copyright Robert D. Moser, 2003
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Discrete LES

Filter
→

N-S Equations Model
→ Discrete LES

Examples: Fourier cut-off, sampled top-hat (finite volume), MILES

Filter is not invertible & stochastic modeling tools are applicable

• Many turbulent fields map to same filtered state

• Evolution of filtered state considered stochastic

This is the formulation used here
copyright Robert D. Moser, 2003
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Stochastic Evolution of LES
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Stochastic Evolution of LES
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Stochastic Evolution of LES
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Ideal LES
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Best deterministic LES evolution: Average of filtered evolutions of

fields mapping to the current LES state

dw

dt =
〈

d̃u

dt

∣∣∣ ũ = w

〉

• Equivalently average of model terms: m = 〈M | ũ = w〉

• Two Theorems:
1) 1-time statistics of w and ũ match (Pope 2000, Langford & Moser 1999)

2) Mean-square difference between dw

dt
and dũ

dt
minimized but finite.
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Optimal LES

Statistical data requirements for Ideal LES are outrageous

• # of conditions = # DOF in LES

Stochastic estimation as an approximation to conditional average

• Pick functional form of m(w)

• Minimize mean-square error of approximation to conditional average

• Results in model formulation first proposed by Adrian (1979,1990)

copyright Robert D. Moser, 2003
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Optimal LES
An example

Estimate conditional average m ≈ 〈M |ũ = w〉

Suppose m(w) = A + Bw + Cw2 + Dw3, then

〈(M − m(ũ))Ej〉 = 0 ⇒ 〈MEj〉 = 〈m(ũ)Ej〉

where E = (1, ũ, ũ2, ũ3) is the event vector

Equations solved for coefficients A, B, C and D ⇒ Optimal model

Must know 〈MEj〉 and 〈EiEj〉

• Try using DNS correlation data

• Then get correlations from theory

copyright Robert D. Moser, 2003
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Ideal vs. Optimal LES

For a given turbulent flow and filter, Ideal LES is uniquely defined but

unknown

In contrast, several choices must be made to define Optimal LES

• Selection of modeled term M

E.g. dũ

dt
, τij or ∂jτij

Matters because error minimized is different

• Selection of model dependencies

E.g. spatial locality, nonlinearity

Matters because changes space in which minimum error is sought

copyright Robert D. Moser, 2003
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Developing Optimal LES Models

Modeler needs to design the Optimal model

• Guidance provided by 〈MEj〉 = 〈mEj〉

• Arrange so 〈MEj〉 includes terms of dynamical interest

Model reproduces them a priori

Example: Terms in 2-point correlation or Reynolds stress equation

Statistical information required as input

• For quadratic estimates need correlations:

〈ui(x)uj(x
′)〉 〈ui(x)uj(x

′)uk(x′)〉 〈ui(x)uj(x
′)uk(x′′)ul(x

′′)〉

with separations of order the non-locality of the model

Use DNS correlations for testing,

Theoretically determined correlations later.
copyright Robert D. Moser, 2003
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Tests of Optimal LES with DNS Statistical Data

Evaluate modeling approach without other uncertainties

Principles of Optimal model design

Test Cases:

• Forced isotropic turbulence (Reλ = 164)

Fourier cutoff filter

• Turbulent flow in a plane channel (Reτ = 590)

Spectral representation/filter

Severely filtered (∆x
+

= 116, ∆z
+

= 58)

• Forced isotropic turbulence

Finite volume filter

copyright Robert D. Moser, 2003
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Optimal LES of Forced Isotropic turbulence
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Optimal LES of Turbulent Channel at Reτ = 590
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Constructing Good Optimal Models

Optimal model was formulated to reproduce the y–transport term in

the Reynolds stress equation (∂yukτi2)

Simpler optimal model that doesn’t reproduce transport yields:
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Responsibilities of an LES Model

An LES model must represent several effects of the subgrid turbulence

• Dissipation of energy (and Rij) - standard requirement

• Subgrid contribution to mean equation (unresolved Reynolds stress).

• Subgrid contribution to Rij transport

• Subgrid contribution to pressure redistribution of Rij

Optimal LES provides a mechanism to construct models that do this

• Select M and Ej , so that 〈MEj〉 includes terms in Rij equation

copyright Robert D. Moser, 2003
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Optimal LES Development Map
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Finite Volume Optimal LES

Like standard finite volume schemes, except:

• Cell size not small compared to turbulence scales

• Standard reconstruction techniques to determine finite volume fluxes are
not applicable

True solution is not smooth on scale of the grid volume.

Fluxes must be modeled.

• Use Optimal model of the fluxes.

• Estimate consistent with turbulence statistics,
not numerical convergence.

Need FV formulation for complex geometries

Similar approach for Finite Difference and

Finite Element discretizations

copyright Robert D. Moser, 2003
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Performance of FV LES, Reλ = 164

323 Isotropic LES
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Making Optimal LES Useful

Simulations shown so far relied on DNS statistical data

• Allowed properties and accuracy of OLES models to be explored

• Allowed formulation details to be determined

• Has not produced useful models

Need to do a DNS first

Statistical input is needed

• Rely as much as possible on theory

copyright Robert D. Moser, 2003
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High Reynolds Number Optimal FV LES

Estimation equations are of the form:
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• Green terms are correlations of LES variables

Can compute from LES “on the fly” (dynamically)

• Red terms require modeling input
copyright Robert D. Moser, 2003
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Modeling the Red Terms

The red correlations are surface/volume integrals of:

〈ui(x)uj(x)um(x′)〉 〈ui(x)uj(x)um(x′)un(x′′)〉

Assume Re → ∞, separations in inertial range (r = x − x
′)

Small-scale isotropy, Kolmogorov 2
3 and 4

5 laws, Quasi-normal

approximation

〈ui(x)uj(x
′)〉 = u2δij +

C1

6
ε2/3r−4/3(rirj − 4r2δij)

〈ui(x)uj(x)um(x′)〉 =
ε

15

(
δijrm − 3

2(δjmri + δimrj)
)

〈ui(x)uj(x)um(x′)un(x′′)〉 = 〈ui(x)uj(x)〉〈uk(x
′)ul(x

′′)〉

+ 〈ui(x)uk(x
′)〉〈uj(x)ul(x

′′)〉

+ 〈ui(x)ul(x
′′)〉〈uk(x

′)ul(x)〉
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Theoretical Optimal LES

Forced Isotropic Turbulence

• DNS at Reλ = 164

• LES at Reλ = ∞

10
x

0.001

0.01

0.1

1

10

y

Filtered DNS
Theoretical staggered
Theoretical collocated
DNS-based staggered

PSfrag replacements

filtered DNS, Reλ = 164

DNS-based optimal LES, Reλ = 164

Theoretical optimal LES, Reλ = ∞

Theoretical optimal LES, Reλ = 164

k

E(k)

copyright Robert D. Moser, 2003



30

High (∞) Re Wall-Bounded Turbulence

Assumptions of isotropy and inertial range not valid near wall

Green terms can still be determined dynamically

Need red correlations:

A variety of modeling tools are being evaluated:

• Log-layer similarity (Oberlack)

• Anisotropy expansion & scaling (Procaccia)

• Constraints from N-S equations

• Quasi-Normal approximation

copyright Robert D. Moser, 2003
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Test of Quasi-Normal Approximation
Channel Flow at Reτ = 590

Normalized error, φ11,11(r) =
Q11,11(r)−QNA

L(r) where

L(r) = 〈Qpq,rs(r)Qpq,rs(r)〉
1/2
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Similarity Scaling of Expansion Coefficients
in Channel at Reτ = 940, Expansion of Procaccia
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Conclusions

Discrete LES formulations are useful, avoid problems with

discretization

Optimal LES is a rational basis for discrete LES modeling

• Yields remarkably good LES

• But needs extensive statistical data as input

For Re → ∞, correlations available theoretically (away from walls)

• Kolmogorov theory, Quasi-normal approximation, small-scale isotropy &

a dynamic procedure.

Near walls, need more information

Also need models for subgrid contribution to statistical quantities of

interest (e.g. turbulent energy).
copyright Robert D. Moser, 2003


