A New Approach to LES Modeling R. D. Moser, P. Zandonade, P. Vedula R. Adrian, S. Balachandar, A. Haselbacher J. Langford, S Volker, A. Das

Sponsors: AFOSR, DOE, NASA Ames, NSF

or

Optimal LES: Trading in the Navier-Stokes Equations for Custom Designed Discrete LES

Large Eddy Simulation

Simulate only the largest scales of High-Reynolds number turbulence

- Models of small scales required
- Numerous models developed recently
 - E.g. scale similarity, dynamic, structure function, stretched vortex, deconvolution
- Difficulties remain
 - Wall-bounded turbulence
 - Impact of numerical discretization
- LES is for making predictions!
 - Predict (some) statistical properties of turbulence
 - Predict large-scale dynamics of turbulence

Optimal LES Development Map

Filtering and LES

Filters precisely define the large scales to be simulated

- Not absolutely necessary, but useful
- Provides a framework in which to develop models
- Two flavors of filtering and LES
 - Continuously filtered LES
 - Discretely filtered LES

Continuous LES

- Many filters are invertible or nearly so (e.g. Gaussian)
- A hypothetical exercise: suppose filter can be inverted
 - Determine evolution by defiltering and advancing N-S
 - Best "model" would be a DNS \Rightarrow DNS resolution
 - Coarse resolution determines accuracy limits
 - Best models must depend explicitly on discretization

Discrete LES

- Examples: Fourier cut-off, sampled top-hat (finite volume), MILES
- Filter is not invertible & stochastic modeling tools are applicable
 - Many turbulent fields map to same filtered state
 - Evolution of filtered state considered stochastic
- This is the formulation used here copyright Robert D. Moser, 2003

Stochastic Evolution of LES

Stochastic Evolution of LES

Stochastic Evolution of LES

 \widetilde{u}

Mapping from filtered field to filtered evolution?

Best deterministic LES evolution: Average of filtered evolutions of fields mapping to the current LES state

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \left\langle \left. \widetilde{\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t}} \right| \widetilde{\boldsymbol{u}} = \boldsymbol{w} \right\rangle$$

- Equivalently average of model terms: $m = \langle M | \, \widetilde{\boldsymbol{u}} = \boldsymbol{w} \rangle$
- Two Theorems:

1) 1-time statistics of w and \tilde{u} match (Pope 2000, Langford & Moser 1999) 2) Mean-square difference between $\frac{\mathrm{d}w}{\mathrm{d}t}$ and $\frac{\mathrm{d}\tilde{u}}{\mathrm{d}t}$ minimized but finite.

Optimal LES

- Statistical data requirements for Ideal LES are outrageous
 - # of conditions = # DOF in LES
- Stochastic estimation as an approximation to conditional average
 - Pick functional form of m(w)
 - Minimize mean-square error of approximation to conditional average
 - Results in model formulation first proposed by Adrian (1979,1990)

Optimal LES An example

- Estimate conditional average $m \approx \langle M | \tilde{u} = w \rangle$
- Suppose $m(w) = A + Bw + Cw^2 + Dw^3$, then

$$\langle (M - m(\tilde{u}))E_j \rangle = 0 \qquad \Rightarrow \qquad \langle ME_j \rangle = \langle m(\tilde{u})E_j \rangle$$

where $E = (1, \tilde{u}, \tilde{u}^2, \tilde{u}^3)$ is the event vector

- Equations solved for coefficients A, B, C and $D \Rightarrow$ Optimal model
- Must know $\langle ME_j \rangle$ and $\langle E_iE_j \rangle$
 - Try using DNS correlation data
 - Then get correlations from theory

Ideal vs. Optimal LES

- For a given turbulent flow and filter, Ideal LES is uniquely defined but unknown
- In contrast, several choices must be made to define Optimal LES
 - Selection of modeled term M

E.g. $\frac{\mathrm{d}\tilde{u}}{\mathrm{d}t}$, τ_{ij} or $\partial_j \tau_{ij}$

Matters because error minimized is different

• Selection of model dependencies

E.g. spatial locality, nonlinearity

Matters because changes space in which minimum error is sought

Developing Optimal LES Models

Modeler needs to design the Optimal model

- Guidance provided by $\langle ME_j \rangle = \langle mE_j \rangle$
- Arrange so (ME_j) includes terms of dynamical interest Model reproduces them *a priori* Example: Terms in 2-point correlation or Reynolds stress equation
- Statistical information required as input
 - For quadratic estimates need correlations:

 $\langle u_i(\mathbf{x})u_j(\mathbf{x}')\rangle = \langle u_i(\mathbf{x})u_j(\mathbf{x}')u_k(\mathbf{x}')\rangle = \langle u_i(\mathbf{x})u_j(\mathbf{x}')u_k(\mathbf{x}'')u_l(\mathbf{x}'')\rangle$

with separations of order the non-locality of the model

- Use DNS correlations for testing,
- Theoretically determined correlations later.

Optimal LES Development Map

Tests of Optimal LES with DNS Statistical Data

- Evaluate modeling approach without other uncertainties
- Principles of Optimal model design
- Test Cases:
 - Forced isotropic turbulence ($Re_{\lambda} = 164$) Fourier cutoff filter
 - Turbulent flow in a plane channel ($Re_{\tau} = 590$) Spectral representation/filter Severely filtered ($\Delta x^+ = 116, \Delta z^+ = 58$)
 - Forced isotropic turbulence

Finite volume filter

Optimal LES of Forced Isotropic turbulence

copyright Robert D. Moser, 2003

Constructing Good Optimal Models

- Optimal model was formulated to reproduce the *y*-transport term in the Reynolds stress equation $(\partial_y u_k \tau_{i2})$
- PSfrag replacements
 Simpler optimal model that doesn't reproduce transport yields:

Responsibilities of an LES Model

An LES model must represent several effects of the subgrid turbulence

- Dissipation of energy (and R_{ij}) standard requirement
- Subgrid contribution to mean equation (unresolved Reynolds stress).
- Subgrid contribution to R_{ij} transport
- Subgrid contribution to pressure redistribution of R_{ij}
- Optimal LES provides a mechanism to construct models that do this
 - Select M and E_j , so that $\langle ME_j \rangle$ includes terms in R_{ij} equation

Optimal LES Development Map

Finite Volume Optimal LES

- Like standard finite volume schemes, except:
 - Cell size not small compared to turbulence scales
 - Standard reconstruction techniques to determine finite volume fluxes are not applicable

True solution is not smooth on scale of the grid volume.

- Fluxes must be modeled.
 - Use Optimal model of the fluxes.
 - Estimate consistent with turbulence statistics, not numerical convergence.
- Need FV formulation for complex geometries
- Similar approach for Finite Difference and Finite Element discretizations

Performance of FV LES, $Re_{\lambda} = 164$ 32^3 Isotropic LES

Optimal LES Development Map

Making Optimal LES Useful

Simulations shown so far relied on DNS statistical data

- Allowed properties and accuracy of OLES models to be explored
- Allowed formulation details to be determined
- Has not produced useful models Need to do a DNS first
- Statistical input is needed
 - Rely as much as possible on theory

High Reynolds Number Optimal FV LES

Estimation equations are of the form:

(

$$M'_{ij} = \sum_{\alpha} L^{\alpha}_{ijk} w^{\alpha}_{k} + \sum_{\alpha,\beta} Q^{\alpha\beta}_{ijkl} (w^{\alpha}_{k} w^{\beta}_{l})'$$

$$\langle w^{\gamma}_{m} M'_{ij} \rangle = \sum_{\alpha} L^{\alpha}_{ijk} \langle w^{\alpha}_{k} w^{\gamma}_{m} \rangle + \sum_{\alpha,\beta} Q^{\alpha\beta}_{ijkl} \langle (w^{\alpha}_{k} w^{\beta}_{l})' w^{\gamma}_{m} \rangle$$

$$\langle w^{\gamma}_{m} w^{\delta}_{n} \rangle' M'_{ij} \rangle = \sum_{\alpha} L^{\alpha}_{ijk} \langle w^{\alpha}_{k} (w^{\gamma}_{m} w^{\delta}_{n})' \rangle$$

$$+ \sum_{\alpha,\beta} Q^{\alpha\beta}_{ijkl} \langle (w^{\alpha}_{k} w^{\beta}_{l})' (w^{\gamma}_{m} w^{\delta}_{n})' \rangle$$

• Green terms are correlations of LES variables

Can compute from LES "on the fly" (dynamically)

• Red terms require modeling input

Modeling the Red Terms

The red correlations are surface/volume integrals of:

 $\langle u_i(\mathbf{x})u_j(\mathbf{x})u_m(\mathbf{x}')\rangle \qquad \langle u_i(\mathbf{x})u_j(\mathbf{x})u_m(\mathbf{x}')u_n(\mathbf{x}'')\rangle$

Assume $Re \to \infty$, separations in inertial range ($\mathbf{r} = \mathbf{x} - \mathbf{x}'$)

Small-scale isotropy, Kolmogorov $\frac{2}{3}$ and $\frac{4}{5}$ laws, Quasi-normal approximation

$$\langle u_{i}(\mathbf{x})u_{j}(\mathbf{x}')\rangle = u^{2}\delta_{ij} + \frac{C_{1}}{6}\epsilon^{2/3}r^{-4/3}(r_{i}r_{j} - 4r^{2}\delta_{ij})$$

$$\langle u_{i}(\mathbf{x})u_{j}(\mathbf{x})u_{m}(\mathbf{x}')\rangle = \frac{\epsilon}{15} \left(\delta_{ij}r_{m} - \frac{3}{2}(\delta_{jm}r_{i} + \delta_{im}r_{j})\right)$$

$$\langle u_{i}(\mathbf{x})u_{j}(\mathbf{x})u_{m}(\mathbf{x}')u_{n}(\mathbf{x}'')\rangle = \langle u_{i}(\mathbf{x})u_{j}(\mathbf{x})\rangle\langle u_{k}(\mathbf{x}')u_{l}(\mathbf{x}'')\rangle$$

$$+ \langle u_{i}(\mathbf{x})u_{k}(\mathbf{x}')\rangle\langle u_{j}(\mathbf{x})u_{l}(\mathbf{x}'')\rangle$$

$$+ \langle u_{i}(\mathbf{x})u_{l}(\mathbf{x}'')\rangle\langle u_{k}(\mathbf{x}')u_{l}(\mathbf{x})\rangle$$

Theoretical Optimal LES

- Forced Isotropic Turbulence
 - DNS at $Re_{\lambda} = 164$
 - LES at $Re_{\lambda} = \infty$

High (∞) Re Wall-Bounded Turbulence

- Assumptions of isotropy and inertial range not valid near wall
- Green terms can still be determined dynamically
- Need red correlations:
- A variety of modeling tools are being evaluated:
 - Log-layer similarity (Oberlack)
 - Anisotropy expansion & scaling (Procaccia)
 - Constraints from N-S equations
 - Quasi-Normal approximation

30

Test of Quasi-Normal Approximation Channel Flow at $Re_{\tau} = 590$

Normalized error,
$$\phi_{11,11}(\mathbf{r}) = \frac{Q_{11,11}(\mathbf{r}) - QNA}{L(\mathbf{r})}$$
 where
 $L(\mathbf{r}) = \langle Q_{pq,rs}(\mathbf{r}) Q_{pq,rs}(\mathbf{r}) \rangle^{1/2}$

Similarity Scaling of Expansion Coefficients in Channel at $Re_{\tau} = 940$, Expansion of Procaccia

Conclusions

- Discrete LES formulations are useful, avoid problems with discretization
- Optimal LES is a rational basis for discrete LES modeling
 - Yields remarkably good LES
 - But needs extensive statistical data as input
- For $Re \to \infty$, correlations available theoretically (away from walls)
 - Kolmogorov theory, Quasi-normal approximation, small-scale isotropy & a dynamic procedure.
- Near walls, need more information
- Also need models for subgrid contribution to statistical quantities of interest (e.g. turbulent energy).