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Gravitational Instability

Instability of linear density perturbations of a uniform, isothermal, static
gas, extending to infinity (Jeans 1902):
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The cold interstellar medium has a complex hierarchical structure:
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n o~ 2x10°cm™ (—l) , T ~ 10K

1 pc
So clouds of 10 pc size have n~200 cm™3, Mg~10* Msyn, and My~ 24 Msyn.

Prediction 1:
The characteristic stellar mass in these molecular clouds is ~24 Mgyn



At what rate is the gas converted into stars?
Without pressure support, a uniform sphere collapses in a free-fall time:
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(roughly a sound crossing time of the Jeans length).

Prediction 2:
Molecular clouds are converted into stars in two million years.

Both predictions from the linear gravitational instability are quite wrong....



Large range of stellar masses: 0.01 - 100 Msyn
Characteristic stellar mass: 0.2 Msyn
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Stellar mass distribution
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1. Broad range of masses, characteristic mass Mgp << M
2. Gas conversion into stars ~ 2% per free-fall time

Why are the predictions from the gravitational instability so wrong?



el
The cold ISM is highly turbulent Re=—~~ 10

v
The turbulence is supersonic, .# s ~ 30
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--> Highly non-linear velocity and densit;_/;:__ |
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Turbulence Solution to Star Formation

1) Mass range of stars:

Stellar masses are set by turbulence,
not by self-gravity (M>M, is possible).

Density peaks that become stars
are pieces of postshock gas.

Their size scales with the thickness
of the postshock gas, set by shock
jump conditions and velocity scaling.

MHD shocks: A=/ M (1), p(l)=p, M , = M~XNp~ Pp, | M
Velocity scaling: A ,(I)~u(l)~1""7 = M~I"5~]
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2) Characteristic stellar mass:

Bonnor-Ebert mass: isothermal sphere confined by external pressure
(Ebert 1955; Bonnor 1956; McCrea 1957).

Thermal pressure:
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Dynamic pressure of turbulence (shocks --> nonlinear density jump):
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(Notice that My, ~ n ?T?07!)
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3) Rate of star formation: A

Thermal energy
uy>Cy = E >E,
Isothermal shocks create

a complex filamentary
density structure.

Gravitational energy

Ek M2 1/2 Ek,O Ek(L) _(L
~ >, u~L ", ——~1 = =
Eg (PL) Eg,O Eg(L) Ly

The turbulence can prevent the gravitational collapse.

Star formation occurs only where the density is enhanced and the
turbulence is dissipated, few % of the total mass.



Supersonic turbulence is ubiquitous and energetically dominant
in star-forming regions.

How do we study its role in the process of star formation?

Two different numerical approaches......



1. Brute-force approach: AMR simulations of star-formation
5pc--> 0.5AU, 5123 --> (2x106)3
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2. Idealized experiments of supersonic turbulence
Statistics of turbulence (universal) --> Statistical theory of star formation

Experiment setup:

Isothermal E.O.S.

Periodic B.C.

Uniform |.C. (rho, B)

Random |.C. (u)

Random acceleration (1 <k <2)

No gravity

Up to 2,0483 (or larger with AMR)

The flow is relaxed for several tqyn before computing statistics
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Euler Codes:

» PPM (Colella and Woodward 1984)
» PPML (Popov and Ustyugov 2007, 2008)
» Stagger (Nordlund)
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Y—I’,' ach=10, Stagger Code .
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Lognormal PDF of gas density
Nordlund and Padoan (1999):
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Consistent with observations (Alyssa Goodman et al. 2008)



Power-law velocity power spectrum:

Padoan et al. (2007): 100¢

E(k) o k= N

Burgers: k-2 f :

Kolmogorov: k-5/3
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Is there an energy cascade in supersonic turbulence?

Supersonic turbulence as inertial motions ending into oblique shocks:

u, 1is dissipated by the shock o Ec e _ /9
u, goes into postshock shear E €q

So there is a solenoidal cascade, but the dissipative flow geometry is
primarily sheets (postshock regions), not filaments (vortices).



Energy cascade in incompressible turbulence

Kolmogorov (1941): §u” 6Tu =constant = Su'ecl = Su’oc]’”’

What are the scaling exponents in supersonic turbulence?

Kritsuk et al. (2007): 1,0243 and 2,0483 PPM simulations:

2nd order SFs: C” = 0.95, (3 = 0.98 3rd order SFs: C“ =1.26, (3 =1.29
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Energy cascade In supersonic turbulence
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Kolmogorov scaling for v: (k) ~ k17



logyg S,(4)

Velocity u, v = p'/3u, and w = p'/%u
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Kolmogorov scaling for v: S3(¢) = (|0v]?) ~ ¢



Structure function exponents of v = 13
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Summary
» Supersonic turbulence can explain masses and formation rate of stars.

» A statistical theory of star formation can be derived from the statistics of
supersonic turbulence.

» The pdf of gas density is a Lognormal and its standard deviation is a
function of the rms Mach number.

» The energy spectrum is a power law, with slope ~1.9, and Es/Ec~2.

» The “energy cascade” concept applies to supersonic turbulence, in the
sense that the average kinetic energy density rate does not depend on
scale.

» The Log-Poisson intermittency model works well in supersonic
turbulence, and its parameters (scaling exponent and dimension of the
most dissipative structures) have the correct physical meaning.





