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MORPHODYNAMICS OF RIVERS AND TURBIDITY 
CURRENTS:

AN ELEGANT CONVERSATION BETWEEN WATER AND SEDIMENT

Gary Parker
Dept. of Civil & Environmental Engineering, Dept. of Geology

University of Illinois 

Image courtesy A. Alabyan
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A CIVIL ENGINEER/GEOLOGIST GIVING AN INVITED TALK 
AT THE AMERICAN PHYSICAL SOCIETY

IS LIKE A COUNTRY PRIEST GRANTED AN AUDIENCE WITH 
THE POPE

http://www.broughtonhousegallery.co.uk/raverat/058-prodigal-son.jpg

http://www.broughtonhousegallery.co.uk/raverat/058-prodigal-son.jpg
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“PURE FLUID MECHANICS”

http://www.rikenresearch.riken.jp/research/223/images/2234070426115631.jpg
http://scribalterror.blogs.com/scribal_terror/images/2007/05/02/dust_2.jpg
http://images.jupiterimages.com/common/detail/66/41/23354166.jpg

Haboob dust storm

Capillary waves

Wind ripplesRoll waves

http://www.rikenresearch.riken.jp/research/223/images/2234070426115631.jpg
http://scribalterror.blogs.com/scribal_terror/images/2007/05/02/dust_2.jpg
http://images.jupiterimages.com/common/detail/66/41/23354166.jpgImage courtesy IOCC
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http://upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Hydraulic_jump_in_sink.jpg/391px-
Hydraulic_jump_in_sink.jpg
http://imgi.uibk.ac.at/mmetgroup/trex/webstyle/sierrawave.png

HYDRAULIC JUMPS AND BORES Circular jump in 
kitchen sink

Jump in mountain 
river

Tidal bore
Atmospheric 

hydraulic jump

http://pasternack.ucdavis.edu/falls/aircontent/images/firstthreat.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Hydraulic_jump_in_sink.jpg/391px-Hydraulic_jump_in_sink.jpg
http://www.gomoncton.com/ENSite/Motorcoach/images/ImageBank/low/TidalBore_Web.jpg
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http://people.whitman.edu/~carsonrj/resea
rchpics/MendenhallAK2.jpg
http://crevassezone.org/Photos/Graphics/
3054L-(Meander).jpg

NON-SEDIMENT FLUID-BOUNDARY INTERACTION: 
MEANDERING CHANNELS IN ICE

http://people.whitman.edu/~carsonrj/researchpics/MendenhallAK2.jpg
http://crevassezone.org/Photos/Graphics/3054L-(Meander).jpg

http://people.whitman.edu/~carsonrj/researchpics/MendenhallAK2.jpg
http://people.whitman.edu/~carsonrj/researchpics/MendenhallAK2.jpg
http://people.whitman.edu/~carsonrj/researchpics/MendenhallAK2.jpg
http://crevassezone.org/Photos/Graphics/3054L-(Meander).jpg
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THE EFFECT OF INCREASING THE WIDTH-DEPTH 
RATIO B/H

Tributary of Amazon RiverFlume with flow off

Dunes

Image courtesy H. Ikeda Courtesy National Geographic
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Rhine River, SwitzerlandFlume with flow off

Single-row 
alternate bars

B/H → UP

Courtesy H. Ikeda Courtesy M. Jaeggi
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Fuefuki River, JapanFlume with flow off

Multiple-row 
alternate bars

B/H → UP

Courtesy H. Ikeda Courtesy S. Ikeda
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Ohau River, New ZealandFlume with flow off

Braiding

B/H → UP

Courtesy H. Ikeda
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RIVER DUNES

Fly River, Papua New Guinea

Confluence of Parana and Bermejo River, Argentina

Courtesy M. Amsler, J. Best, D. Parsons etc.
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DUNES IN THE RHINE DELTA, THE NETHERLANDS

Image courtesy A. Wilbers and A. Blom
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Flow

Flow

Dunes in a channel at St. Anthony 
Falls Laboratory, University of 

Minnesota, USA

Dunes in a channel at Tsukuba 
University, Japan. 

Image courtesy H. Ikeda.

DUNE ASYMMETRY
flow
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The parameters:
x = streamwise distance [L]
t = time [T]
η = bed elevation [L]
qt = volume total sediment transport

rate per unit stream width [L2/T]
ξ = H + η = water surface elevation [L]

Exner’s Question (1920, 1925): Why Are Dunes Asymmetric?

U

x

H

η

λp = bed porosity [1]
g = acceleration of gravity [L/T2]
H = flow depth [L]
U = depth-averaged flow velocity [L/T]
qw = UH = water discharge per unit 

stream width [L2/T]

FELIX EXNER: FATHER OF RIVER MORPHODYNAMICS

ξ
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OCCAM’S RAZOR: THE MIMINAL FORMULATION TO 
ANSWER THE QUESTION

Shallow-water inviscid equations of mass 
and momentum balance

Exner’s equation of conservation of bed 
sediment:

Relation between sediment transport rate 
and flow hydraulics:
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Quasi-steady assumption: qt/qw << 1

Exner’s seminal contribution: if more 
sediment enters a reach than leaves, the 
bed elevation in the reach increases.

The phenomenon of sediment transport 
was poorly known in Exner’s time.  Exner
guessed that a higher velocity caused a 
higher sediment transport rate.
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REDUCTION

Range for dunes: low Froude number: Fr2 << 1
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MORE REDUCTION

substituted into
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Since ξ = constant. qw = 
constant and n > 0,
c > 0 is an increasing 
function of η!
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THE RESULT

Dunes migrate downstream, and migration speed increases with bed elevation

0
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Exner’s original sketch

And thus the asymmetry!

time
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THE FLOW AND THE BED TALK TO EACH OTHER

The field of sediment morphodynamics consists of the class of problems 
for which the flow over a bed interacts strongly with the shape of the bed, 
both of which evolve in time.

Quasi-steady assumption: 
The flow naturally talks fast, but can also talk slow.
The bed naturally talks slow.  
The only part of the flow’s talk that the bed hears is the slow part.
(Quasi-steady assumption: qt/qw<<1)
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Could you slow down 
a bit, I’m having a bit 
of trouble trying to 
get the gist of it all.

BLAHblahBLAH
blahBLAH…

THE CONVERSATION

http://people.debian.org/~neal/FOSDEM-2005/03-Marcus-IPC-0/03-Marcus-IPC-
0.src/conversation.jpg

Courtesy IOCC

http://people.debian.org/~neal/FOSDEM-2005/03-Marcus-IPC-0/03-Marcus-IPC-0.src/conversation.jpg
http://people.debian.org/~neal/FOSDEM-2005/03-Marcus-IPC-0/03-Marcus-IPC-0.src/conversation.jpg
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SCALES

Paraná delta, 
Argentina

10 ~ 100 km

Buenos Aires

Delta advances 
~ 300 m/year

Current ripples:

~ 20 cm 
wavelength

https://zulu.ssc.nasa.gov/mrsid/

http://www.ux1.eiu.edu/~cfjps/1300/ripples.jpg

https://zulu.ssc.nasa.gov/mrsid/
http://www.ux1.eiu.edu/~cfjps/1300/ripples.jpg
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LONGITUDINAL STREAKS

Image courtesy T. Tsujimoto
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LONGITUDINAL STREAKS: 
LINEAR STABILITY ANALYSIS

x

y

z

3D non-isotropic closure for 
Reynolds-averaged Navier-Stokes 
equations: Speziale. 

Closure for sediment transport rates 
qx and qz in terms of bed shear 
stress and slope vectors.
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http://www.ux1.eiu.edu/~c
fjps/1300/ripples.jpg

DUNES, ANTIDUNES

Dunes: Middle 
Loup River, 
Nebraska

Antidunes, 
Brittany, France

Image courtesy D. Mohrig
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DEFINITION OF DUNES AND ANTIDUNES

Dunes are 1D (or quasi-1D) bedforms for which the water surface fluctuations are 
approximately out of phase with the bed fluctuations.  That is, the water surface is 
high where the bed is low and vice versa.  As is shown below dunes migrate 
downstream.

Antidunes are 1D (or quasi-1D) bedforms for which the water surface fluctuations are 
approximately in phase with the bed fluctuations.  That is, the water surface is high 
where the bed is high and vice versa.  As shown below, most antidunes migrate 
upstream, but there is a regime within which they can migrate downstream.

flow
migration

flow migration
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REGIME DIAGRAM:
POTENTIAL FLOW OVER A WAVY BED

x = streamwise direction
y = vertical direction
u = streamwise velocity
v = vertical velocity
p = pressure
g = gravitational acceleration
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flow migration

ηo = amplitude of bed perturbation
Ho = unperturbed depth

Linearized potential flow analysis is sufficient 
to explain existence regimes, but not formation
(gives neutral stability)
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PHASE DIAGRAM FOR DUNES AND ANTIDUNES BASED 
ON LINEAR POTENTIAL THEORY OVER A WAVY BED
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subcritical response 
(dunes possible)
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FLOW IN THE DUNE REGIME

Fro <  [tanh(k)/k]1/2 k = 2πH/λ H = depth, λ = wavelength
Water surface is out of phase with the bed.
Depth variation is out of phase with the bed
Flow accelerates from trough to crest.
Sediment transport increases from trough to crest.
Bedform migrates downstream.
Bedform becomes asymmetric.

flow
sediment 
transport

erodes 
upstream

deposits 
downstream

flow accelerates over crest:
dune migrates downstream
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FLOW IN THE UPSTREAM-MIGRATING ANTIDUNE 
REGIME

[tanh(k)/k]1/2 < Fro < [k tanh(k)]-1/2

Water surface is in phase with the bed.
Depth variation is in phase with the bed
Flow decelerates from trough to crest.
Sediment transport decreases from trough to crest.
Bedform migrates upstream (or hardly at all).
Bedform stays symmetric.

flow

sediment 
transport

deposits 
upstream

erodes 
downstream

flow decelerates over crest:
antidune migrates upstream
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flow

sediment 
transport

erodes 
upstream

deposits 
downstream

flow accelerates over crest:
antidune migrates downstream

FLOW IN THE DOWNSTREAM-MIGRATING ANTIDUNE 
REGIME

[k tanh(k)]-1/2 < Fro
Water surface is in phase with the bed.
Depth variation is out of phase with the bed.
Flow accelerates from trough to crest.
Sediment transport increases from trough to crest.
Bedform migrates downstream.
Bedform becomes asymmetric.
These are antidunes that look like dunes: not too common, but they are observed.

No shallow-water limit as k →0.
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STABILITY ANALYSIS FOR DUNES AND ANTIDUNE 
FORMATION: OCCAM’S RAZOR
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Closure for νt: a constant value that gives a 
result close to the logarithmic law
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In sediment transport law, τb = bed shear stress
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INSTABILITY MECHANISM FOR DUNES
Consider flow into a Venturi contraction.
The favorable pressure gradient on the upstream side intensifies the 
bed shear stress.
The adverse pressure gradient on the downstream side suppresses 
shear stress.

Wall shear stress τb
intensified

Wall shear stress τb
suppressed

Bed perturbation:
black solid

Shear stress perturbation →
sediment transport rate 
perturbation: red dashed

Sediment transport rate 
peaks a little before the bed 
perturbation peak
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Bed perturbation:
black solid

sediment transport rate 
perturbation: red dashed

qt in qt out

The bed shear stress perturbation, and thus the sediment transport rate 
perturbation, lead the bed elevation perturbation.

There is thus net deposition at the apex (and net erosion at the trough), 
and so amplitude increases in time.

A nonlinear analysis including flow separation on the lee side of dunes 
is necessary to explain nonlinear equilibrium: numerical, e.g. k-ε

NET DEPOSITION AT APEX: LINEAR MODEL
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NONLINEAR PHENOMENON OF ANTIDUNES
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SINGLE-ROW AND MULTIPLE-ROW ALTERNATE BARS

Naka River, Japan

Hii River, JapanOccam’s razor minimal analysis:
2D shallow water equations + 
2D sediment transport formulation

Controlling parameter: width-depth ratio B/H
No bars → single-row bars →multiple-row bars

Image courtesy S. Ikeda

Image courtesy H. 
Takebayashi
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http://www.athabascalake.com/ecoexped/william_river_braided.jpg

William River Canada

http://www.athabascalake.com/ecoexped/william_river_braided.jpg
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BRAIDING MECHANISM:
CONFLUENCES

Skeithara Sandur, Iceland Image courtesy H. Ikeda
Image courtesy H. 

Johannesson
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NONLINEAR INTENSIFICATION OF SEDIMENT 
TRANSPORT RATE AT CONFLUENCES: SCOUR

Image courtesy P. Ashmore
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DOWNSTREAM, THE FLOW EXPANDS AND 
DEPOSITS A MINI-FAN

Sunwapta River Canada

Image courtesy P. Ashmore
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Sunwapta River Canada

DOWNSTREAM, THE FLOW EXPANDS AND 
DEPOSITS A MINI-FAN

Image courtesy P. Ashmore
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AS THE FLOW GETS WIDER AND SHALLOWER, IT 
BECOMES UNSTABLE AND BIFURCATES INTO 

ONE OR MORE CHANNELS
Image courtesy P. Ashmore



44

Copyright G. Parker, 2007

AS THE FLOW GETS WIDER AND SHALLOWER, IT 
BECOMES UNSTABLE AND BIFURCATES INTO 

ONE OR MORE CHANNELS
Image courtesy P. Ashmore
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MEANDERING

Mississippi River, USA

I forgot where

From maps of H. Fisk

Image courtesy Y. Shimizu
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MEANDERING MECHANISM

Δu
on&

in&

u

Occam’s razor first analysis:

2D shallow-water equations corrected for 
effect of helical flow in bends (2.5D 
formulation)
+

Relation for channel migration:

Locus of high streamwise flow velocity

uEno Δ=&
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Braided  stream on the North Slope, Brooks Range, Alaska

ONLY BRAIDING IS POSSIBLE IN THE ABSENCE OF 
BANK STABILIZATION

Image courtesy B. Murray
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SWEET LITTLE LIES

Yes, honey, I’m with you.

http://images.google.com/imgres?imgurl=http://jeroenarendsen.nl/pics/Conversation-Icelanders-
pianist.gif&imgrefurl=http://jeroenarendsen.nl/category/countries/&h=327&w=387&sz=94&hl=en&start=14&um=1&tbnid=
4OxlA6BGtduRcM:&tbnh=104&tbnw=123&prev=/images%3Fq%3Dconversation%26ndsp%3D21%26svnum%3D10%26
um%3D1%26hl%3Den%26client%3Dfirefox-a%26rls%3Dorg.mozilla:en-US:official%26sa%3DN 
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Inside bank to outside 
bank:

“Yes, I’m following you.”
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Inside bank to outside 
bank:

“Yes, I’m following you.”
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Yeah, while you were 
pretending to listen, 

look at the mess we 
got ourselves into!

Image courtesy H. Johannesson
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BEND SKEWING: SUBCRITICAL BIFURCATION OF 
NONLINEAR STABILITY ANALYSIS

Bends grow until cutoff:
There is no nonlinear 

stable state

Old oxbow lake due 
to cutoff

Image courtesy Y. Shimizu

Image courtesy W. Dietrich
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SLUMPING ON OUTSIDE SLOWS DOWN EROSION SO 
TRAPPING OF SEDIMENT BY VEGETATION ON INSIDE 

CAN KEEP UP

Vermilion River, USA
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I slump

I trap

Do we talk to 
each other?

Vermilion River, USA
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NOW FOR A TOUR OF MORPHODYNAMIC PHENOMENA 
WITHOUT DETAIL AS TO HOW THEY ARE SOLVED

Yes, they are tractable to various degrees
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SCROLL BARS

I still can’t remember

Strickland River, Papua 
New Guinea

Image courtesy W. Dietrich

Image courtesy Y. Shimizu
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ALLUVIAL FANS AND FAN-DELTAS

Selenga River at 
Lake Baikal, Russia

https://zulu.ssc.nasa.gov/mrsid/

https://zulu.ssc.nasa.gov/mrsid/
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THE OKAVANGO INLAND FAN, BOTSWANA, 
AFRICA

Graben: 
subsidence

https://zulu.ssc.nasa.gov/mrsid/

https://zulu.ssc.nasa.gov/mrsid/
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THE FAN-DELTA OF THE KUROBE RIVER, JAPAN

https://zulu.ssc.nasa.gov/mrsid/

https://zulu.ssc.nasa.gov/mrsid/
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THE FAN-DELTA OF THE IOCC IRON MINE, 
LABRADOR, CANADA
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THE FAN IN THE DELTA

http://wakamononoh.logoz.
org/images/toimg3.jpg 
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Laboratory fan-delta, ~ 3 m.
Image taken at St. Anthony Falls Laboratory, University of Minnesota USA.

FANS AND FAN-DELTAS AT VARIOUS SCALES
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Fan created by runoff from cultivated field; ~ 6 m.
Image taken by author near Pigeon Point, California.

FANS AND FAN-DELTAS AT VARIOUS SCALES contd.
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Fan in Idaho, USA created by runoff from burned hillside, ~ 50 m.

FANS AND FAN-DELTAS AT VARIOUS SCALES contd.
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Copper Creek Fan, Death Valley, USA; ~ 10 km.
Image courtesy Roger Hooke.

FANS AND FAN-DELTAS AT VARIOUS SCALES contd.
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Kosi River Fan, India; ~ 125 km.

FANS AND FAN-DELTAS AT VARIOUS SCALES contd.

https://zulu.ssc.nasa.gov/mrsid/

https://zulu.ssc.nasa.gov/mrsid/
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Yellow River Fan-delta, China

RIVER MIGRATION AND AVULSION MAKES FANS

https://zulu.ssc.nasa.gov/mrsid/

https://zulu.ssc.nasa.gov/mrsid/
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CONCAVE BANK 
BENCHES

Fly River, Papua 
New Guinea

Image courtesy OTML

Image courtesy OTML
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CHANNELIZATION: 
NATURAL LEVEES

Gilgal Abey River, 
Ethiopia

Missisippi River, USA

https://zulu.ssc.nasa.gov/mrsid/

Image courtesy National Geographic

https://zulu.ssc.nasa.gov/mrsid/
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SEA LEVEL ROSE SOME 120 M SINCE THE END 
OF THE LAST GLACIATION

How does a river mouth respond to sea level rise?
• Does a delta continue to prograde into the ocean?
• Or does the sea drown the delta and invade the river valley (transgression)?

Years before present
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DELTAS AND SEA LEVEL RISE

topset

foreset

autoretreat
autobreak

shoreline trajectory

Experiment on effect of base level rise on delta

Image courtesy T. Muto
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AUTORETREAT
Clip courtesy T. Muto
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HOW DID THE DELTAS OF 
MAJOR RIVERS RESPOND?

Delta of the 
Paraná River, 
Argentina

https://zulu.ssc.nasa.gov/mrsid/

https://zulu.ssc.nasa.gov/mrsid/


74

Copyright G. Parker, 2007

BEDROCK INCISION

Somewhere in Bolivia
https://zulu.ssc.nasa.gov/mrsid/

https://zulu.ssc.nasa.gov/mrsid/
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Hirose River, Japan
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SUBMARINE MORPHODYNAMICS DUE 
TO TURBIDITY CURRENTS

California Margin

Image courtesy MBARI
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CANYON EXCAVATION

Monterey 
submarine canyon

Image courtesy MBARI
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MEANDERING OF SUBMARINE CHANNELS

Mississippi 
Submarine Fan 
(Weimer, 1991).

Indus Submarine Fan 
(Kenyon et al., 1995)

Amazon Submarine 
Fan (Pirmez, 1995)
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CONGO DEEP-SEA FAN

Savoye, Cochonat et al. (2000)
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FANS AND CANYONS: STEPPED PROFILES

Stepped profile, Niger 
Margin

From Prather et al. (2003)
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SELF-CONFINEMENT AND LEVEE CONSTRUCTION

Turbidity currents are adept at confining themselves between levees.

Channel on Amazon 
Submarine Fan

Damuth and Flood (1985)

Toyama Submarine Channel
Kubo and Nakajima (2002)
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SELF-CONTAINMENT

Submarine meandering channels contain themselves 
between levees over 100’s ~ 1000’s of km and scores 
~ 100’s of bends.

Zaire Fan: Savoye, Cochonat et 
al. (2000)

Bengal Fan: Schwenk, 
Spiess,Hubscher, Breitzke

(2003)



84

Copyright G. Parker, 2007

CYCLIC STEPS:
A UNIVERSAL BEDFORM OF

FROUDE-SUPERCRITICAL FLOW
IN RIVERS AND TURBIDITY CURRENTS FLOWING 

OVER ERODIBLE BEDS

Dry Meadow Creek, USA

Small stream near 
Calais, France

Deep sea offshore of 
California, USA

Images courtesy M. Neumann, H. Capart and L. Pratson
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TRAIN OF HYDRAULIC JUMPS

Trains of cyclic steps in a coastal outflow 
channel on a beach in Calais, France.  

Image courtesy H. Capart. 

flow  

jumps  

The steps move upstream

step migration
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THE IDEA

Steady, uniform (normal) Froude-supercritical flow  (Frn > 1 ) over a 
freely-erodible bed of sand might be unstable,

and within an appropriate range might not devolve to ephemeral, short-wave 
(L/h ~ 1) antidunes, but instead would devolve to

orderly, sustained trains trains of long-wave (L/h << 1) cyclic steps, with 
regions of subcritical and supercritical flow bounded by hydraulic 

jumps

Sn

hn

qsn = qw χf

L h

c

Δη

Se
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FULLY NONLINEAR PERIODIC SOLUTION OF PERMANENT 
FORM WITH CONSTANT UPSTREAM MIGRATION

Sufficiently supercritical flow over a plane bed is subject to a long-wave
instability that devolves into upstream-migrating supercritical and subcritical

regions bounded by hydraulic jumps.

Fr < 1 Fr = 1 Fr > 1

Jump!
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L h

c

Δη

Se

LIKE THIS
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LET’S LOOK AT THIS IMAGE AGAIN

Tailings Fan, Lake 
Wabush, Canada

Roll waves

Cyclic steps!
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THE SAME CYCLIC STEP INSTABILITY IS FOUND IN 
INCISING BEDROCK STREAMS

Images courtesy Michael 
Neumann, Gough Island Weather 

Station and Ellen Wohl

Box Creek, USA

Gough Island
Dry Meadow Creek, USA
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CYCLIC STEPS IN 
BEDROCK:

This one is too 
beautiful not to show

Ojiro River, Japan

Image courtesy H. Ikeda
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WHAT ARE THESE 
WASHBOARD-LIKE 

FEATURES IN THE DEEP 
SEA?

Seabed “sediment waves” off the 
California margin

Image courtesy MBARI
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interface of overriding turbidity current

SUBAQUEOUS DEPOSITIONAL AND EROSIONAL 
CYCLIC STEPS

Image courtesy W. Normark
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EARTH → TITAN

Water → liquid methane
Granitic rock → ice as a “rock”

European Space Agency
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ALLUVIAL GRAVEL-BED RIVERS ON TITAN?

The evidence suggests that at least near where Huygens touched down, 
there is a plethora of alluvium in the gravel and sand sizes.  The gravel
presumably consists of water ice and appears to be fluvially rounded.

Images courtesy European Space Agency
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