LAMINAR FLOW CONTROL AT HIGH SPEEDS: A work in progress

WILLIAM SARIC

MECHANICAL AND AEROSPACE ENGINEERING ARIZONA STATE UNIVERSITY

High-Speed LFC - APS Nov03

Acknowledgements

- Helen Reed has participated from the beginning with LST, PSE, NPSE, DNS, Euler, and N-S computations as well as airfoil design for LFC
- NASA-LaRC (1988-1996), AFOSR (1996-2002), DARPA (2001-2003), NASA-Dryden (2002-2003) are co-principal employers

Boundary-Layer Transition

- Receptivity
 - External disturbances enter the boundary layer, creating the initial conditions for instability
 - Acoustic and vortical disturbances, roughness, geometry, vibration
- Typical Linear Stability
 - Unsteady, linearized Navier-Stokes
 - Basic-state distortions are ignored
- Breakdown
 - Nonlinear interactions
 - Basic-state distortions lead to secondary instabilities

PATHS TO TURBULENCE (Reshotko et al.)

Control

"NATURAL"

- MODIFICATIONS OF Cp
- "PASSIVE"
 - FIXED WALL SUCTION
 - MEANFLOW MODIFIERS
 - WALL TEMPERATURE DISTRIBUTION

• "ACTIVE"

- FEEDBACK SYSTEMS WITH DYNAMIC RESPONSE

Transition Control

- Basic idea has always been to control the initial instability before it grows large enough to cause transition
- Re-laminarization of turbulent boundary not economical

High-Speed LFC - APS Nov03

Transition Control

- Physics of the linear mechanisms are known
 - THIS IS THE REGIME WITHIN WHICH LAMINAR FLOW CONTROL OPERATES
 - AN ABSOLUTE TRANSITION PREDICTION IS NOT NECESSARY
- Certain instabilities exhibit early nonlinearities and saturation – this suggests the need and the opportunity for a different type of control

Boundary-Layer Instabilities

- Attachment Line
- Curvature Induced
- Streamwise (T-S waves)
- Crossflow

ASU UNSTEADY WIND TUNNEL

High-Speed LFC - APS Nov03

Streamwise Instabilities (T-S Waves)

- Important for both swept and unswept wings
- Breakdown usually in pressure recovery region
- Subsonic: primarily 2-D
- Supersonic: primarily 3-D approximately *M* < 4.5
- Supersonic: 2-D Mack Modes for M > 4.5
 - Control strategy is very much different in this case
- Very sensitive to freestream sound
- Very sensitive to 2-D roughness
 - M < 1 normal roughness</p>
 - M > 1 oblique roughness

Crossflow Instabilities

- Important only for swept wings
- Stationary and traveling modes
- No new physics up to approx M = 3
- Very sensitive to freestream turbulence
- Very sensitive to very small 3-D roughness
- Insensitive to sound and small 2-D roughness
- Details in Saric et al 2003 Ann. Rev.

Control Mechanisms

- Wave superposition and cancellation
- Modification of instability amplifiers
- Meanflow modifications

High-Speed LFC - APS Nov03

Control Mechanisms

- Wave superposition and cancellation
- Modification of instability amplifiers
- Meanflow modifications

High-Speed LFC - APS Nov03

Stability Modifiers

- Parametric resonance Mathieu equation
 - Stabilize unstable modes/De-stabilize stable modes
 - » Typical response through subharmonic
 - Not exploited in bounded shear flows
- Change the instability forcing function
 - pressure gradient, suction, heating/cooling for control
 - useful for streamwise instabilities (T-S waves)

Control Mechanisms

- Wave superposition and cancellation
- Modification of instability amplifiers
- Meanflow modifications

High-Speed LFC - APS Nov03

Meanflow modifications

- Large amplitude sound
 - Acoustic streaming due to quadratic nonlinearity
 - » Affects the profile curvature
 - » May be useful for separation control
 - Not practical for control of instabilities
- Excite *stationary* instabilities
 - Stationary waves (crossflow or Görtler vortices) distort meanflow. Stability of distorted meanflow is changed.

High-Speed Applications

- Weak Boundary-Layer Suction
- Natural Laminar Flow
- Modified Mean Flow

High-Speed LFC - APS Nov03

Boundary-Layer Suction (see Joslin 1998)

- Transonic experiments in NASA-LaRC TPT
- NASA-LaRC Jetstar flight tests
- F-16XL supersonic flight tests: Boeing, NASA
- It works
 - Economic trade-offs and reliability are unclear

Natural Laminar Flow

- Reno Air, DTI, Desk-Top Aero Concept
 - Richard Tracy, Ilan Kroo, et al. (AIAA Reno 2002)
 - Very low sweep angle, long run of accelerated flow
- NAL, Japan Concept (AIAA St Louis 2002)
 - Very rapid crossflow acceleration, then flat Cp
- Don't be marginal with T-S
 - Wind tunnel tests are difficult
 - High Re is difficult

Mean Flow Modifications ASU Concept

- Sweep wing beyond Mach angle (subsonic L.E.)
- Accelerate the flow to x/c = 80%

Amplifies crossflow but subcritical to T-S

- Use distributed roughness to excite subcritical wavelengths that:
 - Grow early
 - Modify meanflow
 - Prevent critical wavelengths from growing
 - Decay before causing transition

High Speed Swept-Wing Studies at ASU

- Quiet Supersonic Platform (QSP) ongoing
 - With Simone Zuccher, Lloyd McNeil, Jarmo Monttinen
- Computations
 - LST, NPSE development and computations
 - Airfoil design for LFC in ASU experiments, flight tests, LaRC experiment, LMCO system and experiment
- Experiments
 - ASU SWT at M=2.4; F-15 at M=1.9; LaRC 4x4 UPWT at M=2.17; ARC 9x7 at M = 2.4 (2004); Draken at M =1.8 (2005)

Crossflow Transition

Crossflow Instability

- Inviscid instability
- Requires wing sweep + streamwise pressure gradient
- Linear eigenvalue problem
- Stationary (ω =0) and traveling unstable waves
- Co-rotating vortices aligned with potential flow direction
- Early development of nonlinear effects

Naphthalene flow visualization for $Re_c = 2.4 \times 10^6$ and no artificial roughness High-Speed LFC – APS Nov03

Artificial Roughness at LE of Polished Surface

Parabolized

Review: Herbert (1997)

PSE popular

- Include nonparallel and nonlinear effects
- Successfully model variety of convective flows
- Relatively small resource requirements compared with D

Fundamentals of Computational Fluid Dynamics

Patrick J. Roache

MOST UNSTABLE MODE AT λ = 12 mm

EXCITATION	RESPONSE	COMMENT
• 12 mm	12 mm 6 4	No 24 mm No 36
• 36 mm	36 mm 18, 12, 9 7.2, 6, 5.1 4.5, 4	Transition moves forward slightly
• 18 mm	18 mm 9 6 4.5	No 12 mm No 36 mm
• 8 mm	8 mm 4	No 12 mm

Control roughness

High-Speed LFC - APS Nov03

UNSTEADY WIND TUNNEL

ROUGHNESS

- NONLINEAR RESPONSE OF STREAMWISE VORTICES CREATES HARMONICS IN WAVENUMBER SPACE, NOT SUBHARMONICS
- INTRODUCE HIGHER WAVENUMBER DISTURBANCES THAT INITIALLY GROW AND INHIBIT THE GROWTH OF LOWER WAVENUMBER DISTURBANCES. THE HIGHER WAVENUMBER DISTURBANCES THEN DECAY, LEAVING NOTHING

CONTROL STRATEGY

ASSUME BACKGROUND ROUGHNESS \approx 2 MICRON AND RANDOM

BIAS THIS DISTRIBUTION WITH SUBCRITICAL SPACING TO INHIBIT GROWTH OF CRITICAL WAVELENGTHS AND DELAY TRANSITION

CONFIRMED WITH NPSE OF HAYNES & REED (2000) AND DNS OF WASSERMANN & KLOKER (2002)

High-Speed LFC - APS Nov03

High Speed LFC

- F-15B Flight Tests
- ASU Wind Tunnel Tests
- High-Reynolds-Number Wind Tunnel Tests

High-Speed LFC - APS Nov03

Outline

• F-15B Flight Tests

- Basic ideas
- Flowfield Computations of ASU side
- Recent Flights
- ASU Wind Tunnel Tests
- High-Reynolds-Number Wind Tunnel Tests

Flight Trajectory

NASA-DFRC F-15B

High-Speed LFC - APS Nov03

ASU side of test article, Λ = 30°

High-Speed LFC - APS Nov03

6μm roughness spaced at 4 mm, 2%C

High-Speed LFC - APS Nov03

x'/c

F-15B Flight Tests Cont.

- F-15B limited to Mach 1.5 by Eglin AFB on 14 May 02
- Delays pushed testing back
 - e.g. 3 aborts during March 03
 - Low priority and equipment problems
- Flight tests resumed July 03
 - 1. Improved landing technique minimized oil splashes
 - 2. Pressure tests conducted first (4 channels at a time)
 - 3. Distributed roughness with periodic roughness elements
 - 4. Obtain data at M = 1.85 and M = 0.9

M =1.85 @ 40k ft altitude

Overshoot on *Cp* nullifies control inboard

Rec approx 9 million •control 4 mm •maintains laminar boundary layer •not susceptible to random LE disturbances

F-15 Subsonic IRT Results

- $\cdot M = 0.9$
- $\cdot \Lambda = 30^{\circ}$
- · H = 36, 000 ft
- · *Re*' = $2.5 \times 10^{6}/\text{ft}$
- mid-span chord = 2.5 ft
- Rec = 6.25×10^6
- Baseline, 80% chord, pressure minimum
- With 4 mm control,

full chord laminar

flow

Outline

- F-15B Flight Tests
- ASU Wind Tunnel Tests
 - Hotfilms, hotwires, glow discharge, and PWM CTA
 - IR Thermography (Zuccher et al APS 03)
- High-Reynolds-Number Wind Tunnel Tests

Outline

- F-15B Flight Tests
- ASU Wind Tunnel Tests
- High Reynolds Number Wind Tunnel Tests
 - Model design
 - Stability analysis and tunnel conditions
 - Status

NASA-LaRC Test

Test campaign Dec 02/Jan 03

- Confirmed leading-edge contamination
- Leading-edge radius twice the design value
- Test campaign May 03
 - ASU redesign of airfoil Model #2, re-fabricated at Tri Models
 - Suction peak near leading edge caused separation bubble and premature transition
 - Leading-edge flow field in tunnel remarkably different than freeair calculation – subsonic leading edges

NASA Langley UPWT

Symmetric, 3.5% thick

LE sweep 68°, TE sweep 66.5°

Unit *Re* = 7 million/foot, *q* = 1600 psf, *M* = 2.16

Streamwise chord = 7 feet, Span = 4 feet

Normal-to-LE radius = 1/16 inches

Attachment line $Re_{\theta} \approx 100$

ASU UNSTEADY WIND TUNNEL

LaRC Experiments

- Leading-edge radius was twice as large as originally designed.
- Attachment line contamination at Re' = 2.7x10⁶/ft
- Corresponds to $Re_{\theta AL} = 100$
- Model Machined with new leading edge and improved dp/dx

42.6°C 40 38 36 34 32 30 29.4°C

1M/ft

2.7 M/ft

High-Speed LFC - APS Nov03

LaRC Experiments – part 2

- Tunnel Entry May 2003
- Leading-edge separation bubble
 - Less laminar flow than before
 - Rex (transition) = 700,000
- Confirmed with ASU and LMCO Navier-Stokes
- Need to re-machine model and possibly change angle of attack

CONCLUSIONS

- Periodic roughness technique works for modest Re
- F-15 flight tests are very encouraging
- ASU SWT tests seem affected by leading-edge separation, freestream turbulence, and model scale
- Demonstrated laminar flow at Langley 4x4. With proper redesign, await the high Re tests

