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Red and White Cell Motion in Capillaries
Vink and Duling (1996)
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Sliding Motion of a Membrane 
Over a Thin Surface Glycocalyx
Feng and Weinbaum, JFM 422: 281 (2000)

2 / ph Kα =h2 is fixed in the model.

h1 changes. k=h2/h1
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Two-Dimensional Lubrication 
Theory for the Brinkman Medium

Brinkman equation:

Dimensionless Reynolds-Type Equation:
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Pressure Distribution and Equal Pressure 
Contours Under a Snowboard

(L/W = 10, h2 = 2cm, α(h2) = 100)
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Comparison of a Red Cell and SnowBoard
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Schematic of Dynamic Snow Compression 
Apparatus
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Comparison Between Theoretical and 
Experimental Pressure Profiles
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Periodic Structure of the Endothelial 
Glycocalyx

Squire, Chew, Nenji, Neal, Barry and Michel
J. Struct. Biol. 136, 239 (2001)
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Hexagonal Array seen near Inner Surface
Of Glycocalyx in Freeze-fracture

Squire, Chew, Nenji, Neal, Barry and Michel (2001)
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Model for Mechanotransduction
Weinbaum et al. Proc. Natl. Acad. Sci. 100, 7988-7996 (2003)
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Model for Flow in Capillary

Cross-section of capillary

Core protein array
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Drag Force Distribution on Each Core Protein

5µm diameter capillary

Total drag = 1.4 x 10-3 pN
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Deflection of Core Protein

Distributed force along core protein

Core protein

core proteinDeformed
core  protein
under flow

Core protein
under no
flow

Central
axis

Diagram of loading on core protein
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Relaxation Of Endothelial Surface Layer

Vink, Duling and Spaan (2001)

Characteristic time

Τ2
∗ = 0.38 s
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Flexural Rigidity of Core Protein

Novel Beam Equation:

c--solid fraction

Characteristic Times:

Predicted EI Vink�s Experiment:

Measured EI: actin (Satcher and Dewey, 1996)

Two time constants found by series solution to beam equation

(short time)

(long time)

EI = 700 pN · nm2
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Force Amplification



Results: Uniform Laminar flow region
Thi, Weinbaum and Spray (2003)

Control
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τ = 10dyn/cm2
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F-actin
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Variable K

ESL Drainage Due to RBC Arrest

Drainage Time

Sangani and Acrivos
(1982)

L

Lf
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ESL Drainage
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Dynamic Compression with Goose Down
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Feasibility of Supporting a Train Car

Pc2=5.2×104Pa Lift force = 260 tons
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Sketch of the New Train Model in Transverse 
Plane
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Performance of the Enhanced Lift 50 Ton 
Train Car



! There is a remarkable dynamic similarity between a red cell gliding on 
the endothelial glycocalyx and a human skiing though they differ in 
size by O(1015).

! For a given planform without lateral leakage lift increases as the 
square of the Brinkman permeability parameter α=h/Kp1/2

! For two-dimensional planforms with lateral leakage the lift decreases 
as (W/L)2.

! The endothelial glycocalyx is an extraordinary structure whose fibers 
are stiff enough to transmit fluid shear stress to the actin cytoskeleton 
in initiating intracellular signaling. However, they would easily buckle 
during red cell arrest were it not for the fluid draining pressure which 
carries most of the normal load. 

! The small elastic restoring force of the fibers allows for a huge
reduction in the sliding friction due to the solid phase.

! A highly compressible track with the mechanical properties of goose 
down is capable of supporting a 50 ton train car traveling at even 
relatively low speeds with minimal sliding friction. At high speeds 
there would be little deformation. 

Conclusions


