From Red Cells to Skiing to a New Concept for a Train Track

The American Physical Society

56th Annual Meeting of the Division of Fluid Dynamics

NYC/New Jersey

November 23-25, 2003

Sheldon Weinbaum Departments of Biomedical & Mechanical Engineering New York Center for Biomedical Engineering The City College of New York, CUNY

Collaborators

Red Cells

Hans Vink, Univ. Amsterdam

Jianjun Feng, City College of New York

Mechano-transduction

Xiaobing Zhang, City College of New York

Yuefeng Han, City College of New York

Steve Cowin, City College of New York

Mia Mia Thi, City College of New York

David C. Spray, Albert Einstein Medical College

Skiing and Train track

Qianhong Wu, City College of New York

Yiannis Andreopoulos, City College of New York

Red and White Cell Motion in Capillaries

Vink and Duling (1996)

Sliding Motion of a Membrane Over a Thin Surface Glycocalyx Feng and Weinbaum, JFM 422: 281 (2000)

 h_2 is fixed in the model. h_1 changes. $k=h_2/h_1$

$$\alpha = h_2 / \sqrt{K_p}$$

Two-Dimensional Lubrication Theory for the Brinkman Medium

Brinkman equation:

$$\nabla p = \mu \left[\nabla^2 - \frac{1}{K_p} \right] V$$

Dimensionless Reynolds-Type Equation:

Pressure Distribution and Equal Pressure Contours Under a Snowboard $(L/W = 10, h_2 = 2cm, \alpha(h_2) = 100)$

Veinbaum, 2003

Comparison of a Red Cell and SnowBoard

Schematic of Dynamic Snow Compression Apparatus

Comparison Between Theoretical and Experimental Pressure Profiles

Periodic Structure of the Endothelial Glycocalyx

Squire, Chew, Nenji, Neal, Barry and Michel J. Struct. Biol. 136, 239 (2001)

Hexagonal Array seen near Inner Surface Of Glycocalyx in Freeze-fracture

Squire, Chew, Nenji, Neal, Barry and Michel (2001)

Model for Mechanotransduction

Weinbaum et al. Proc. Natl. Acad. Sci. 100, 7988-7996 (2003)

Model for Flow in Capillary

Cross-section of capillary

Governing Equations

Core - Navier-Stokes Equation

dP	1	∂	$\left(\frac{1}{P} \partial U_{c} \right)$
$dZ^{-\mu}$	R	∂R	$\left(\frac{R}{\partial R}\right)$

 $\frac{\text{Glycocalyx}}{\text{dP}} - \frac{\text{Brinkman Equation}}{1 \partial \left(-\partial U\right)} \quad \mu$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}Z} = \mu \frac{\Gamma}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \mathcal{O}_{\mathrm{m}}}{\partial R} \right) - \frac{\mu}{\mathrm{K}_{\mathrm{p}}} \mathrm{U}_{\mathrm{m}}$$

Sangani and Acrivos (1982)

Core protein array

c solid fraction

Drag Force Distribution on Each Core Protein

Deflection of Core Protein

Diagram of loading on core protein

Relaxation Of Endothelial Surface Layer

Vink, Duling and Spaan (2001)

Flexural Rigidity of Core Protein

Novel Beam Equation:

$$EI \cdot \frac{\partial^4 y}{\partial x^4} = -\frac{\pi}{c} \cdot \frac{\mu a^2}{K_p} \cdot \frac{\partial y}{\partial t}$$

c--solid fraction

$$\frac{\text{Characteristic Times:}}{T_1^* = 0.0044 \cdot \frac{\pi}{c} \cdot \frac{\mu a^2}{K_p} \cdot \frac{L^4}{EI}} \qquad \text{(short time)}$$

$$T_2^* = 0.0789 \cdot \frac{\pi}{c} \cdot \frac{\mu a^2}{K_p} \cdot \frac{L^4}{EI} \qquad \text{(long time)}$$

Two time constants found by series solution to beam equation

<u>Predicted *EI* Vink's Experiment:</u> $EI = 700 \ pN \cdot nm^2$ <u>Measured *EI*:</u> $EI = 17 \times 10^3 \ pN \cdot nm^2$ actin (Satcher and Dewey, 1996)

Deflection of Core Protein

Force Amplification

Optical trap: 0.1~0.5 pN (transform receptor) Drag core protein: 1.4×10⁻³ pN Drag 27 fiber bush: 3.8×10⁻²pN Vertical shear force actin filament: 0.09 pN

Results: Uniform Laminar flow region Thi, Weinbaum and Spray (2003)

F-actin

Control DMEM $\tau = 10 dyn/cm^2$ for 5 h with DMEM+1% BSA

 $\tau = 10 dyn/cm^2$
for 5 h with
DMEM,

τ = 10dyn/cm² for 5 h with DMEM+10% FBS

F-actin is redistributed (more stress fibers throughout cell)

 $\tau = 10 dyn/cm^2$ for 5 h with DMEM + 1% BSA $\tau = 10 dyn/cm^2$ for 5 h with DMEM + 10% FBS

Buckling of Initially Curved Beam

Revised Beam Equation

$$EI \cdot \frac{d^2}{dx^2} (y - y_0) = P(\delta - y)$$

ESL Drainage Due to RBC Arrest

Drainage Time

$$=\frac{\mu L^{2}}{12P_{c}}\int_{L_{f0}}^{L_{f}}\frac{-dL_{f}}{K_{p}L_{f}}$$

 $\frac{\text{Variable K}}{\text{Sangani and Acrivos}} K_{p} = \frac{2}{9} \cdot \frac{r^{2} L_{f} / c_{0} L_{f0}}{\sum_{s=0}^{30} q_{s} \left[\left(c_{0} L_{f0} / c_{\max} L_{f} \right)^{1/3} \right]^{s}}$

ESL Drainage

Dynamic Compression with Goose Down

Feasibility of Supporting a Train Car

	DYNAMIC	ENHANCED LIFT
	COMPRESSION	TRAIN TRACK
	WITH GOOSE	MODEL
	DOWN	(L=25m, W =2m)
	(CASE 1)	(CASE 2)
Darcy permeability		
Κ _ρ	1.6×10⁻ ⁸ m²	1.6×10 ⁻⁸ m²
Characteristic time		
t _c	0.1s	3s(v=8.3m/s)
Characteristic length		
L _c	0.40m	25m
Pressure		
Pc	400Pa	P _{c2}

$$\frac{P_{c2}}{P_{c1}} = \left(\frac{L_2}{L_1}\right)^2 \frac{t_{c1}}{t_{c2}} \frac{K_{p_1}}{K_{p_2}} \Rightarrow P_{c2} = 5.2 \times 10^4 Pa \quad \text{Lift force} = 260 \text{ tons}$$

Sketch of the New Train Model in Transverse Plane

Performance of the Enhanced Lift 50 Ton Train Car

einbaum, 2003

Conclusions

- There is a remarkable dynamic similarity between a red cell gliding on the endothelial glycocalyx and a human skiing though they differ in size by O(10¹⁵).
- For a given planform without lateral leakage lift increases as the square of the Brinkman permeability parameter $\alpha = h/Kp^{1/2}$
- For two-dimensional planforms with lateral leakage the lift decreases as (W/L)².
- The endothelial glycocalyx is an extraordinary structure whose fibers are stiff enough to transmit fluid shear stress to the actin cytoskeleton in initiating intracellular signaling. However, they would easily buckle during red cell arrest were it not for the fluid draining pressure which carries most of the normal load.
- The small elastic restoring force of the fibers allows for a huge reduction in the sliding friction due to the solid phase.
- A highly compressible track with the mechanical properties of goose down is capable of supporting a 50 ton train car traveling at even relatively low speeds with minimal sliding friction. At high speeds there would be little deformation.