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Meridional Overturning Circulation (MOC)
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* sinking of dense water; distributed upwelling

- vertical mixing maintains stratification

* energy inputs and rates of turbulent mixing?

- mean flow — roles of buoyancy, wind stress and mixing?
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The ocean energy budget
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* Role of buoyancy?



- Convection under differential surface heating/cooling
- Available Potential Energy (APE)
- Energy pathways in stratified / convecting flows

* A connection between turbulent mixing and buoyancy
forcing

- Ocean models and the roles of surface buoyancy (and
wind) forcing



Surface buoyancy forcing — Rossby’s experiment
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- Non-uniform heating/cooling at base; zero net heat input
- narrow end wall plume, broad downward return flow
- stratification relies on interior vertical diffusion



Horizontal convection at large Ra

L/2=60cm

imposed uniform heat input flux
(half of box shown)

Synthetic schlieren, Mullarney, et al. (2004)

* Ra ~10'2 or Ra-~ 10'4; flow insensitive to form of BCs

» tfransitions: small-scale convection within boundary layer,
shear instability in plume, eddies in interior



Horizontal convection at large Ra

L/2=60cm

imposed uniform heat input flux

Passive tracer + synthetic schlieren, Mullarney, et al. (2004)

* Ra ~10'2 or Ra~ 10'4; flow insensitive to BCs

» fransitions: small-scale convection within boundary layer,
shear instability in plume, eddies in interior



Adding turbulent mixing
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- vary vertical diffusivity by adding mechanical mixing
* miXing increases overturning convection
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FI1G. 8. Dependence of meridional overturning streamfunction
on vertical diffusivity.

From Bryan 1987 (see also Winton 1995,
Park & Bryan 2000)

- vary vertical diffusivity in numerical ocean models
* more ‘mixing’ increases overturning convection



A simple mechanical model

q, T g, heating
v v v v

cooling

dpe _d’p.

‘/1 e —
dz dz?

- zero net heating (steady state)

* single dominant plume sinking to bottom

* plume is a geostrophic slope current with entrainment

* interior return flow with vertical mixing

- surface buoyancy forcing and interior mixing are balanced
(plume buoyancy flux = buoyancy mixed down from surface)

Hughes & Griffiths, Ocean Modelling, 2006; JFM 2007



A simple mechanical model

For diffusivity kK = 10> m?/s, entrainment constant E, = 0.1

<—(q =2PW
C
a=25x10°K

Overturning vol. flux V,__ ~ E045k0-56q 1/5

» overturning dependent on surface buoyancy forcing
» predictions consistent with observations

Hughes & Griffiths, Ocean Modelling, 2006



A simple mechanical model

For heat transport g, = 2 PW, entrainment constant E, = 0.1
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Overturning vol. flux V,__ ~ E045k0-56q 1/5

- entrainment reduces required interior k and energy input
(a short-circuit pathway for buoyancy)
* balance between mixing and surface buoyancy forcing
Hughes & Griffiths, Ocean Modelling, 2006



Roles of mixing and buoyancy?

e Hypothesis: the MOC is largely forced by surface buoyancy
fluxes, with the rate of overturning governed also by the

rate of vertical mixing.

e What are the energy pathways and global budget?

e Does wind stress play a dominant role?



Available potential energy

- Two cases: identical PE, different APE
« We cannot choose which to use

- Irreversible mixing increases background PE ( ‘mixing
efficiency’)



Available potential energy

- surface buoyancy fluxes convert BPE to APE

- Mean flow buoyancy transport converts APE to KE

- Irreversible mixing converts APE to BPE (depends on
mixing efficiency)



Available & background potential energy

Potential Energy:
PEE/pgde
14

Background Potential Energy: The PE of an adiabatically
re-sorted, statically stable state.

14
where
1
Ze (X, 1) = 1 / H (p(x',1) — p(x,1)) dV’,
14

Available Potential Energy : The PE that could be released to
generate motion.

APE = PE — BPE = / pg(z — z)dV
v
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Available potential energ

[¥] (WOCE section 25°W: 65°N—-55°S)

 APE = PE released on relaxation to a state of no motion:;
- APE is generated by stirring, wind stress, buoyancy fluxes



APE in the oceans

- Most of the mechanical energy in ocean circulation is APE
(eg. Gill, Green & Simmonds, 1979)
Basin average KE ~ 103 J/kg, APE ~ 10" J/kg

 Only rates of energy conversion are important

(order 10° W/kg for each term — surface buoyancy forcing, irreversible
mixing, dissipation of TKE, reversible buoyancy fluxes, KE from surface
stress)



A revised ocean energy budget
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A revised ocean energy budget
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A revised ocean energy budget
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- mechanical forcing is balanced by dissipation
 buoyancy transports due to overturning and

adiabatic stirring are in balance
Hughes, Hogg & Griffiths (2009) J. Phys. Oceanogr. 39, 3130-3146.



The APE loop
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- APE is generated by surface buoyancy fluxes and
mechanical forcing

- In steady state, surface buoyancy forcing is exactly
balanced by irreversible mixing

- Same conclusion as from mechanical model.



Numerical ocean models
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- how well are energy conversions modelled?

Hughes, Hogg & Griffiths (2009) J. Phys. Oceanogr. 39, 3130-3146.



Numerical ocean models
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- simple turbulent viscosity and diffusion parameterisation



Numerical ocean models

;200 W/m? —200 W/m?

;

- surface buoyancy
forcing only (cos y)

* MITgcm, high res
(10-75m x 0.7-7km,

2 x 1600 x 64 points)

« 2-D, non-rotating,
nonhydrostatic

* resolved convection
* K,=10* m?/s
(external energy input)

500 1000 1500 2000 2500 3000 3500
Y (km)

 Resolving convection makes circulation deeper and stronger

Hughes, Hogg & Giriffiths (2009) J. Phys. Oceanogr. 39, 3130-3146.



Numerical ocean models
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* Irreversible mixing rate balances surface buoyancy forcing
- APE loop also sets transient response time

Hughes, Hogg & Giriffiths (2009) J. Phys. Oceanogr. 39, 3130-3146.



Ocean models — buoyancy & wind

» Antarctic Circumpolar Current — wind driven??
- rotating b-plane, wind stress, buoyancy forcing, topography
 Hydrostatic

Temperature: Day 0 heating

wind
\

cooling
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2000 2000
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Antarctic Circumpolar Current model, courtesy of A.McC. Hogg



Ocean models — buoyancy & wind
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Antarctic Circumpolar Current model, courtesy of A.McC. Hogg



Ocean models — buoyancy & wind

- Mid-latitude double gyre + meridional overturning

- rotating b-plane, sinusoidal zonal wind stress (+/-0.08 N/m?),
surface buoyancy fluxes (+/-100 W/m?2)

* MITgcm, hydrostatic mode w convective adjustment

* k =10%m?/s (horiz. diffusivity 50 m?/s)
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mean buoy
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Courtesy of J. Tan & A.McC. Hogg



Conclusion

« APE conversions are crucial in ocean circulation

- Mixing and surface buoyancy fluxes are closely coupled
(the flow governs how much mixing is achieved by external
energy input?)

- The MOC requires external energy for mixing, but we predict
a mixing rate matching surface buoyancy forcing

- Links between APE and TKE loops? (can we assume 20%
mixing efficiency?)

- Surface buoyancy fluxes might also be important where wind
stress appears dominant.



Surface buoyancy forcing — with rotation

Baroclinic instability in a cylindrical annulus

Contour interval = 0.01
Max = 0.106

Contour interval = 0.005
Max = 0.0578

1

. . . : . . : Contour interval = 5.0 x 107
Ficure 6. Photo of the quasi-equilibrated flow pattern for the case with 2 = 120°/s and onetrn ;22124.652 10
AT = 6.9°C (Ro = 0.0040, Ta = 2.32 x 10°).

- Non-uniform heating/cooling at base; zero net heat input
 narrow plume, broad downward return flow
- stratification relies on interior vertical diffusion




Horizontal convection at large Ra

Mullarney et al. (2004)



Horizontal convection at large Ra

imposed uniform heat input flux

Mullarney, et al. (2004)

« Ra~10'2 or Ra~10'4; flow insensitive to BCs

» tfransitions: small-scale convection within boundary layer,
shear turbulence in plume, eddies in interior



