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What’s in This Talk?

|. Optimal stroke patterns for 3-link swimmers

2. Building a better snail




Tiny Swimmers

Life at low Reynolds number the  Scallop Theorem

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 12 June 1976)

Editor’s note: This is a reprint (slightly edited) of a paper of the same title that appeared in
the book Physics and Our World: A Symposium in Honor of Victor F. Weisskopf, published —Vp + v2u —0
by the American Institute of Physics (1976). The personal tone of the original talk has been pT K
preserved in the paper, which was itself a slightly edited transcript of a tape. The figures
reproduce transparencies used in the talk. The demonstration involved a tall rectangular V-u=0
transparent vessel of corn syrup, projected by an overhead projector turned on its side. Some
essential hand waving could not be reproduced.

3 First two images from http://www.astrographics.com/ - Dennis Kunkel
http://www.btinternet.com/~stephen.durr/volvoxtwo.html - Stephen Durr
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3-link Swimmer

 Purcell (1977): proposed design

* Becker, Koehler and Stone (2003): optimized
geometry (arm length/body length and stroke
angle)
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* Purcell (1977): proposed design

* Becker, Koehler and Stone (2003): optimized
geometry (arm length/body length and stroke
angle)
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Fixed geometry

Kanso and Marsden (2005) - 3-link fish
6 Berman and Wang (2006) - insect flight



Model Swimmer
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| s =2l Solve linear system
Vi = (2i, 9, ©:) 5 S L
force ZFiZZ(ZAJi)XJZO
balance =1 =l Nl
- Lowest order: resistive force theory Constraint: links are attached
- Next order: can incorporate effects of l

slenderness and interactions between links — —
Swimming velocities

and efficiencies

R. Cox, Journal of fluid mechanics 44 (4), 791 (1970)
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3-Link Race
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Multiple Links

* Large N — snake
* Analytic solution by Lighthill (in
Mathematical Biofluiddynamics)
» 4] degree angle
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Effect of Slenderness
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Effect of Slenderness
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Gastropod Locomotion
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Locomotion is directly

coupled to stresses in
the thin fluid film
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Gastropod Locomotion

Helix asﬁgt%? |

Retrograde vs  FVles, C. R.Acad. Sci.,
direct waves Paris 145,276 (1907)

Locomotion is directly

coupled to stresses in ‘( B
the thin fluid film i ﬂ - mucus
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What is Required for

Locomotion!

Ehear stress
F=mA=umn)ViA/H Couette flow in small gap
|
Vem = [Va(N — 1) + V1| /N Each pad carries equal mass
v FH ( 1 1 ) Nonlinear characteristics first
= AN \ ulm)  p(m) measured by: |
M. Denny, ). Exp. Biol. 91, 195 (1981)

M. Denny, Nature 285, 160 (1980)



RoboSnail |
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Rheology Cost Function
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Rheology Cost Function

® Mechanical work done in crawling ( = rate of viscous

dissipation)
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® Chemical cost associated with mucus production ( ~ flux in
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Cost of Locomotion
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Mark Denny, Science, 208, No. 4449 (1980)

“The high cost is primarily due to
the cost of mucus production, which
alone is greater than the total cost
of movement for a mammal or
reptile of similar weight, ...”

== shear thinning



Cost of Locomotion
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Final Comments

® 3-link (and n-link) swimmer (low Reynolds number)
M Optimizing kinematics

™ Trade-off between efficiency and robustness in biological
systems?

® Snails
™ Rely on the nonlinear response of pedal mucus to crawl

™ We can “tune” viscous material properties to find which
weakly nonlinear response is energetically favorable =
shear thinning

M Mechanical wall-climber
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