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Flow boundary conditions

What is the appropriate boundary condition for Newtonian liquid flow past a solid surface?

D. Bernoulli, Euler, Coulomb, Girard, 
Navier, Poisson, Poiseuille, Stokes, Hagen, 
Darcy, Helmoltz, Maxwell, Couette...

Today, the no-slip boundary condition is in all textbooks.

Recent series of experiments: apparent breakdown of no-slip.
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Apparent slip

Drainage (squeeze-flow)
 

Surface-attached bubbles in lead to shear-dependent 
apparent slip due to bubble diffusion and compression.

Lauga & Brenner (2004) Phys. Rev. E. 93, 026311

PIV
 

Flow of an electrolyte: If the tracer particles are charged, their 
velocities can include a fake (electrokinetic) slip component.

Lauga (2004) Langmuir 20, 8924

Pressure drop vs. flow rate
 

Simple models for heterogeneous boundary conditions: 
distributed regions of (perfect) slip such as bubbles.
Two parameters: length scale, surface coverage.

Lauga & Stone (2003) J. Fluid Mech. 489, 55
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FIG. 1: Typical squeeze flow experiment: a solid sphere of radius a is oscillated in a liquid at a

distance D ! a of a smooth solid surface with amplitude d ! D and frequency ω. The surfaces

are covered by microscopic gas bubbles of contact angle θ and radius of curvature R . The set of

bubbles is approximated by a gas layer of time evolving thickness h(t).

The presence of bubbles modifies equation (2) in two ways. First, flow occurs over

a distribution of bubbles located on an otherwise no-slip surface, so the viscous force is

reduced by an amount f given by equation (3), where λ is the appropriate effective slip

length for flow over a distribution of bubbles [18, 36].

Second, the size of the bubbles changes in time in response to pressure fluctuations in

the liquid. This volume effect will modify the amount of liquid necessary to be squeezed out

of the gap at each cycle of the oscillations, hence the viscous force. Consequently, bubble

dynamics has to be subtracted from the forcing VS and the hydrodynamic lubrication Fh

force is now given by a modified Reynolds equation

Fh = −f
6πηa

D

(
VS − 2

dh

dt

)
(6)

where h is an average bubble thickness on each surface and the factor 2 accounts for the

fact that each surface is covered with bubbles.

C. Rate of change of bubble height

In order to calculate dh/dt in equation (6), let us now consider the dynamics of the

bubbles. We assume the bubbles are undeformed by viscous stresses and remain spherical,

with radius of curvature R(t) and interior angle (π − θ) (see Figure 1). We also neglect

interactions between bubbles. We expect h(t) to depend explicitly on the forcing on the

5

Zhu & Granick (2002) 
Phys. Rev. Lett. 88, 106102
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Other studies

A new method to measure slip
 

Diffusion of a colloidal probe near a slip 
surface can be used to infer slip lengths.

Lauga & Squires (2005) Phys. Fluids 17, 103102

Influence of slip on flow stability
 

Slip has large stabilizing effect on normal modes
but negligible effect on transient growth.

Lauga & Cossu (2005) Phys. Fluids 17, 088106

slip no-slip

Review
 

Discussion of theory, simulations, experiments.

Lauga, Brenner & Stone (2006) Handbook of Experimental Fluid Dynamics - In press

motion occurs for the zz and yy modes, although the xx has
the slowest spatial decay and may be easiest to measure !see
Fig. 5".

Another attractive feature of the proposed experimental
system is the ease of performing multiple experiments within
the same experimental cell. Surfaces with patterned proper-
ties could be used to probe surfaces with different putative
slip lengths, and differential measurements could be used to
remove the uncertainties associated with cell-to-cell variabil-
ity.

Although the calculations presented here are valid only
for particles “far” from the wall, the experiments proposed
here need not be performed in this limit. In fact, the results
we present here could assist in boundary-integral studies to
obtain the various mobilities/diffusivities for systems with
colloidal spheres “near” partially slipping walls.

Throughout the paper, we have assumed the surface of
the particle to obey the no-slip condition. If, instead, the
particle exhibits a slip length !p, the bulk particle diffusivity
would increase to

D̃0 = D0
1 + 3 Knp

1 + 2 Knp
, !56"

where Knp=!p /a. However, the image system responds to
the !unchanged" Stokeslet, and thus the wall corrections in
Eqs. !36a" and !36b" remain valid independent of Knp. Only
the “self”-diffusion term is affected by particle slip; the first
reflected interaction terms !between two particles, or be-
tween a particle and a wall" are unchanged.

Finally, although the idea proposed here is concerned
primarily with passive microrheology, the change in the par-
ticles mobilities could in theory also be measured using ac-
tive microrheology, i.e., measuring the direct relationship be-
tween particle motion and a known applied force, whether
that force were applied to the particle itself !in which case
the self-mobility would be measured, similar to AFM experi-
ments using colloidal probes9,10,12,14,16–18,58", or to an adja-

cent particle !in which case the coupling mobility would be
measured".
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APPENDIX A: GENERAL SOLUTION OF THE STOKES
EQUATIONS NEAR A PLANAR BOUNDARY

We present in this section the general solution of the
Stokes equation near a solid boundary, using the notations
introduced in Sec. II A, for a general velocity field u. We
introduce the Fourier transform in the directions parallel to
the plane, for each of the velocity components

ũj!k1,k2,z" = F#uj$ =
1

2"
% % uj!x,y,z"eik1x+ik2y dx dy ,

!A1"
!j = 1,2,3"

and its inverse

uj!x,y,z" = F−1#ũj$

=
1

2"
% % ũj!k1,k2,z"e−ik1x−ik2y dk1 dk2. !A2"

The general solution to Eq. !5" is given by

ũ# = & h

8"$
'(A# + ik#Bz)e−kz, # = (1,2) , !A3a"

ũ3 = & h

8"$
'(A3 + kBz)e−kz, !A3b"

where k= !k1
2+k2

2"1/2 and # can take the values (1, 2), and
where we have taken the magnitude of the force to be F=1
to simplify the notations !as the equations are linear with
respect to F, this can be done without loss of generality". The
four dimensionless constants !A1 ,A2 ,A3 ,B" are linked
through the continuity equation, giving

i!k1A1 + k2A2" = k!B − A3" . !A4"

The remaining three constants are found by applying the slip
boundary conditions, Eq. !12", on the surface, which deter-
mines the velocity field uniquely.

We note for future use that the Fourier transform of the
velocity field !A3" can be divided into two components:

ũ = ũa + zũb, !A5"

giving corresponding real-space velocity fields

FIG. 5. Variation of the coupled mobility bx2x1
!nondimensionalized by

1/4"$h" with d /h, for four values of the Knudsen number: Kn=0.1 !circles
and solid line", Kn=1 !squares and solid line", Kn=5 !triangles and solid
line" and Kn=% !dashed-dotted line". Inset: the same data but in log–log
scale, which included the asymptotic behaviors for each value of Kn&% as
given in Eq. !51" !dashed lines".

103102-10 E. Lauga and T. M. Squires Phys. Fluids 17, 103102 !2005"
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sis where, for instance, the maximum transient energy
growth is computed. Let us define, for a given Fourier mode,
the instantaneous kinetic energy of the flow perturbations as

E!t,!,",û0" ! #
−1

1

$û!!,y,",t"$2dy , !10"

which is a function of time and the initial condition,
û0! û!! ,y ," ,0". If we denote by G!t" the energy growth at
time t, maximized over all nonzero initial conditions,

G!t,!,"" = max
û0!0

% E!t,!,",û0"
E!0,!,",û0"& , !11"

then the maximum transient energy growth possible over all
times, Gmax!! ,"", is defined as

Gmax!!,"" = max
t#0

G!t,!,"" . !12"

In Fig. 3 we report the isovalues of Gmax!! ,"" computed
for Re=1500 for both the no-slip !solid line" and the sym-
metric slip cases !dashed line". Although the maximum en-
ergy growth with slip is always larger than in the case of
no-slip, the increase is small and therefore slip hardly affects
the transient energy growth. The optimal maximum transient
energy growth !largest value over all wavenumbers" is ob-
tained for !=0 and "=2 for both slip and no-slip boundary
conditions. Figure 4 displays the maximum energy growth as
a function of time, G!t ,!=0,"=2", at Re=1500 and in the
symmetric slip case for different values of the Knudsen num-
ber. The small increase of the optimal growth with Kn ap-
pears in all cases. Furthermore, the time where the maximum
growth is attained is also slightly increased by the slip. As
both the square root of the maximum growth and the time at
which it is attained depend linearly on the Reynolds num-

FIG. 1. Neutral curve $i!! ,"=0,Re"=0 for the symmetric slip case !a" and
asymmetric slip case !b" and values of Kn=0 !no-slip", 0.01, 0.02, and 0.03.

FIG. 2. Critical Reynolds number for linear stability Re!Kn" for the sym-
metric and asymmetric slip cases. In the case of no-slip !Kn=0", the critical
Reynolds number is 5772.

FIG. 3. Map of the isovalues of the maximum transient energy growth
Gmax!! ,"" for Re=1500 in two cases: No-slip !solid line" and symmetric
slip boundary conditions with Kn=0.03 !dashed line". The values of Gmax
are 10, 100, 200, 300, and 400 from the outer to the inner curve.

FIG. 4. Maximum energy growth G!t ,!=0,"=2" at Re=1500 and in the
symmetric slip case with Kn=0 !no-slip", 0.01, 0.02, and 0.03.

088106-3 A note on the stability of slip channel flows Phys. Fluids 17, 088106 "2005#
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Figure 2: Experimental variation of the slip length, λ, with the liquid-solid contact angle, θ (left), and the
typical experimental shear rate, γ̇ (right), for the experimental results summarized in Tables 1-4: Pressure-
driven flow (◦), sedimentation (•), fluorescence recovery (!), PIV ("), streaming potential (#), fluorescence
cross-correlations ($), SFA (%), and AFM ($). When a solid line is drawn, the experimental results are given
for a range of contact angles and/or shear rates. Furthermore, when the value of the contact angle is unknown,
the results are not reported.

Nanobubbles in polar liquids? Over the last four years, many groups have reported experimental obser-
vation of nanobubbles against hydrophobic surfaces in water [5, 71, 76, 106, 144, 148, 152, 165, 166, 191, 190],
with typical sizes ∼ 10−100 nm and large surface coverage (see also the reflectivity measurements in [85, 143]).
The nanobubbles disappear when the liquid is degassed. Similar bubbles could be responsible for slip mea-
surement in some of the experiments to date (see also [179, 187]). How could the formation of such bubbles be
explained? Thermal fluctuations lead to bubble sizes a ∼

√

kBT/γ, which are on the order of the molecular
length. It has been proposed that shear might induce bubbles, but the mechanism is not clear [44]. An alter-
native scenario could be a local decrease in pressure near hydrophobic surfaces due to intermolecular forces
(see, e.g., Eq. 4.23 in [43]).

The second important issue for nanobubbles is their stability against dissolution. A spherical gas bubble
of radius a, diffuses into the liquid on a timescale [51, 105]

τ ∼
Mp0a2

Dc0RT

(

1 +
p0a

γ

)

(17)

where M is the molar mass, p0 the far-field pressure, D the diffusion coefficient of the gas in the liquid, T
the temperature, c0 the saturated gas concentration in the liquid (mass per unit volume) at pressure p0, γ
the liquid surface tension and R the absolute gas constant; note that this estimate is independent of surface
tension for sufficiently small bubbles. For a 10 nm bubble, τ ≈ 10 µs and τ becomes a few hours when a ≈ 100
µm. It has therefore been argued that the existence of such small bubbles can only be explained if the liquid
is supersaturated with gas [5]. In many pressure-driven flow experiments at small scale, a high-pressure gas
in contact with the liquid is used to induce the flow; for example pressured gas at 10 atm is used to drive
motion in [32], equivalent to the internal pressure of a 100 nm bubble. However, the resulting equilibrium
between a gas bubble and a supersaturated solution is well-known to be unstable as any perturbation either
grows without limit or dissolves away. A possible resolution to the stability problem of such bubbles might
come from intermolecular forces in the gas which become important when bubbles reach small radii and large
pressures [185].

13
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Swimming bacteria - Escherichia coli

Berg Lab - Rowland Institute at Harvard

Protonic Nanomachine Project
http://www.npn.jst.go.jp/

Berg (2003) Annu. 
Rev. Biochem 72, 19

Berg Lab

D. Kunkel Microscopy Inc.

Protonic Nanomachine Project
http://www.npn.jst.go.jp/
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E. coli swimming near a surface

• Smooth-swimming E. coli in growth media 
• Real time 
• Velocity ~30 !m/s
• Microchannel height = 105 !m 
• Solid surface: PDMS

15 µm

Experiment by Willow DiLuzio, DEAS, Harvard University

Superimposed images showing clockwise, circular paths
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Why does the bacterium rotate?

z

x
y

z

y
x

(a)

(b) z

y

xF2

F1

F2

F1

SIDE FRONT

Hydrodynamic interactions between the free-swimming bacterium and the surface
lead to an out-of-plane torque, and since the cell has to be torque-free, it will rotate.

Head

Flagella bundle
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Computing the circle radius

Lauga, DiLuzio, Whitesides & Stone (2006) Biophys. J. 90, 400

dR

da
> 0

although the approximate analytical model can lead to large
errors for the radius of curvature of the trajectory (by up to
50%). For both models, the dependence of the swimming
velocity, U, on the four parameters is found to be consistent
with the increase of the propulsive viscous force with b, r, l,
and n (see the values of the mobilities as calculated in
Appendix A). The radius of curvature decreases with r,
consistent with an increase in the hydrodynamic interactions
with the nearby surface as described by Eq. 7. Furthermore,R
decreases with b, confirming the important role of the viscous
resistance on parts of the helix that are close to the surface
(whose distance to the surface decreases with b) in inducing
the torque on the cell in the z-direction. Finally, the increase of
R with l and n probably follows that of U, through Eq. 12.

Comparison experiments/models using
a relationship between cell size and gap thickness

As was observed earlier, the value of the radius of curvature
from the model depends strongly on the unknown gap thick-
ness h. Returning to the comparison with the results of our
experiments, we see that data for larger cells tend to be more
consistent with the model for large values of h (Figs. 5 and 6).
Thuswe propose here that, if we suppose that all bacteria have
the same geometrical characteristics, fb, r, l, Lkg, our
hydrodynamic model could be used to estimate the relation
between the typical cell size, a, and its steady-state distance to
the wall, h, by fitting the model to the experimental data of
Fig. 2, which show an increase ofRwith cell size. The results
are illustrated in Fig. 7, where we have plotted together the
results of the experiments with two predictions of the full
hydrodynamic model (Eq. 11) where the cell parameters are
given above and where we assume a linear relationship
between a and h,

hðaÞ ¼ h0 1
a$ a1

a2

! "
h1: (25)

The parameters for this fit are h0 ¼ 10 nm, a1 ¼ 0.81 mm,
a2 ¼ 0.35 mm, and the value of h1 is chosen to lead to the
same correlation (slope) between the results of the model and
the experimental data (a, h1 ¼ 119 nm) or the best possible
least-square difference between the model and the data
(b, h1 ¼ 48 nm).

CONCLUSION

We have presented a hydrodynamic model for the swimming
of E. coli near solid boundaries and compared it to a new set of
measurements of cell velocities and trajectories. We have
shown that force-free and torque-free swimming was respon-
sible for the clockwise circular motion of the cells,Vz , 0, as
well as for their hydrodynamic vertical trapping close to the
surface, that is,Vx , 0 and Uz , 0. This trapping is probably
responsible for the extended period of time during which cells
are observed to remain near surfaces, which enhances the
probability of cell adhesion to substrates. Determining the
mechanisms responsible for the relationship between h and
a we inferred from the measurements would be valuable.
The main assumptions made in this article, and which

illustrate the differences between real swimming E. coli cells
and our model, are the following:

1. We have replaced the bundle of several flagella by a
single rigid helix; according to the results of Kim et al.
(31), this might not be a large source of error.

2. We have assumed that the cell body was spherical; this
assumption is probably more important, and an analysis
usinganonspherical headmight lead toanexplanationof the
increase of the distance to the wall, h, with the cell size.

3. We have ignored all interactions between the cell body
and the flagella.

4. We have ignored Brownian motion.

Although relaxing these assumptions would improve on
the agreement between theory and experiments, we do not
expect it would change the physical picture given in this
article for the circular motion. Including the presence of a
second (top) boundary should also modify the cell trajec-
tories (47). If the surface was a perfectly-slipping interface
(such as the free surface between air and water) instead of
a no-slip surface, the change of the direction of the image
system for a point force (48) should lead to bacteria swim-
ming in circles, but in a counterclockwise direction (X.L. Lu,
University of Pittsburgh, private communication).
Finally, our experimental finding that the radius of cur-

vature of cell trajectories depends on the size of the cell,
suggests a new strategy for sorting cells by size using hy-
drodynamic interactions.

APPENDIX A: CELL MOBILITIES

We present in this Appendix the values of the hydrodynamic mobilities of
the bacteria. First, since we have h % a, the lubrication approximation can

FIGURE 7 Best fit to the experimental data (8) by an h(a) law in the full

hydrodynamic model (numerical solution of Eq. 11, straight line), as given
by Eq. 25. The relation between h and a is chosen to obtain the same linear
slope for the results of the model and the experimental data (a) and the best

least-square difference between the model and the data (b).
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a negative torque, Lz , 0, will act on the bacterium and
will rotate the entire cell clockwise around the z axis (Fig. 4,
right). When viewed from above, the bacterium will there-
fore swim to the right, as is observed experimentally. Since
the bacterium as a whole is torque-free (the inertia of the
organism is much smaller than the resisting fluid forces, so
forces and torques on the organism need to balance at each
instant), this torque will be balanced by a positive torque
arising from the viscous resistance to a rotation around the
z axis.
This physical picture allows us to obtain an estimate for

the radius of curvature R of the motion, as the ratio of
the swimming velocity Uy to the out-of-plane rotation rate
Vz. Since the Reynolds number for the flow number is low
(typically Re ! 10"4), the equations of motion for the fluid
are linear (Stokes flow), and therefore instantaneous viscous
forces and torques for various parts of the bacterium are
linearly related to their velocities and rotation rates, with
linear coefficients usually termed mobilities (see Eqs. 8 and 9
below).
We denote by M and N the viscous mobilities of the

bacterium flagella and body, respectively, which are non-
zero even in the absence of a wall, and by W and V those
which are equal to zero when the microorganism swims far
from the surface. For example, the mobility relating the y
component of the viscous force to the y component of the cell
velocity will be denoted by an M-symbol, as it is non-zero
even without the presence of the nearby surface, but the
mobility relating the x component of the viscous torque to
the y component of the cell velocity will be denoted by a
W-symbol, as this mobility is equal to zero far away from
a solid boundary. This distinction will allow us to get a
clear understanding of the physical mechanisms at play when
we obtain formulae for the motion of the organism.
For all these mobilities (say M for illustration purposes)

we will use notations of the formMab
ij , where the superscript

ab is either FU, in which case MFU
ij denotes how the ith

component of a viscous force is linearly related to the jth

component of the cell velocity (Fi ¼ MFU
ij Uj), FV (relation

between force and rotation rate), LU (relation between torque
and velocity), or LV (relation between torque and rotation
rate). We will also always use the convention that the
mobilities are positive, and will therefore appear with a minus
sign when necessary (see Eqs. 8 and 9).
To have an estimate of the radius of curvature of the

trajectories, we need to estimate both the swimming velocity
and the out-of-plane rotation. The swimming velocity is
obtained by balancing the propulsive force of the microor-
ganism due to the rotation of the flagella, MFV

yy ðv"VyÞ,
with the viscous drag on the whole bacterium, given by
ðMFU

yy 1N FU
yy ÞUy, so that

MFV
yy ðv"VyÞ ! ðMFU

yy 1N FU

yy ÞUy: (2)

The rotation rate can be estimated by balancing the wall-
induced torque mentioned above, also due to rotation of
the flagella, Lz ! WLV

zy ðv"VyÞ, with the viscous torque
resisting rotation of the whole bacterium. This is mostly due
to the viscous resistance of the long flagella, "MLV

zz Vz,
which is

WLV
zy ðv"VyÞ ! "MLV

zz Vz: (3)

By evaluating the ratio of the two previous balances, we
obtain an estimate for the radius of the circular motion as

R ! Uy

jVzj
!

MLV
zz M

FV
yy

WLV
zy ðM

FU

yy 1N FU

yy Þ
: (4)

Away from the surface, WLV
zy becomes small and therefore

the radius of curvature of the trajectory will become large,
which is expected as bacteria (during a run) swim in straight
lines. (Note that both translational and rotational diffusion,
neglected in this article, will actually prevent E. coli from
swimming in a straight line for more than a few seconds.) As
is demonstrated below, the simple estimate given by Eq. 4
is consistent with a more detailed calculation for the cell
trajectory.

FIGURE 4 Physical picture (side and front
views) for the out-of-plane rotation of the

bacterium: (a) The positive y-rotation of the

cell body leads to a net viscous x-force on the

cell body,F 1
x.0. (b) The negative y-rotation of

the helical bundle leads to a net negative

viscous x-force on the flagella, F 2
x,0. The

spatial distribution of these forces leads to

a negative z-torque on the bacterium, which
makes it rotate clockwise around the z-axis.
Therefore, when viewed from above, the

bacterium swims to its right.

404 Lauga et al.
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a negative torque, Lz , 0, will act on the bacterium and
will rotate the entire cell clockwise around the z axis (Fig. 4,
right). When viewed from above, the bacterium will there-
fore swim to the right, as is observed experimentally. Since
the bacterium as a whole is torque-free (the inertia of the
organism is much smaller than the resisting fluid forces, so
forces and torques on the organism need to balance at each
instant), this torque will be balanced by a positive torque
arising from the viscous resistance to a rotation around the
z axis.
This physical picture allows us to obtain an estimate for

the radius of curvature R of the motion, as the ratio of
the swimming velocity Uy to the out-of-plane rotation rate
Vz. Since the Reynolds number for the flow number is low
(typically Re ! 10"4), the equations of motion for the fluid
are linear (Stokes flow), and therefore instantaneous viscous
forces and torques for various parts of the bacterium are
linearly related to their velocities and rotation rates, with
linear coefficients usually termed mobilities (see Eqs. 8 and 9
below).
We denote by M and N the viscous mobilities of the

bacterium flagella and body, respectively, which are non-
zero even in the absence of a wall, and by W and V those
which are equal to zero when the microorganism swims far
from the surface. For example, the mobility relating the y
component of the viscous force to the y component of the cell
velocity will be denoted by an M-symbol, as it is non-zero
even without the presence of the nearby surface, but the
mobility relating the x component of the viscous torque to
the y component of the cell velocity will be denoted by a
W-symbol, as this mobility is equal to zero far away from
a solid boundary. This distinction will allow us to get a
clear understanding of the physical mechanisms at play when
we obtain formulae for the motion of the organism.
For all these mobilities (say M for illustration purposes)

we will use notations of the formMab
ij , where the superscript

ab is either FU, in which case MFU
ij denotes how the ith

component of a viscous force is linearly related to the jth

component of the cell velocity (Fi ¼ MFU
ij Uj), FV (relation

between force and rotation rate), LU (relation between torque
and velocity), or LV (relation between torque and rotation
rate). We will also always use the convention that the
mobilities are positive, and will therefore appear with a minus
sign when necessary (see Eqs. 8 and 9).
To have an estimate of the radius of curvature of the

trajectories, we need to estimate both the swimming velocity
and the out-of-plane rotation. The swimming velocity is
obtained by balancing the propulsive force of the microor-
ganism due to the rotation of the flagella, MFV

yy ðv"VyÞ,
with the viscous drag on the whole bacterium, given by
ðMFU

yy 1N FU
yy ÞUy, so that

MFV
yy ðv"VyÞ ! ðMFU

yy 1N FU

yy ÞUy: (2)

The rotation rate can be estimated by balancing the wall-
induced torque mentioned above, also due to rotation of
the flagella, Lz ! WLV

zy ðv"VyÞ, with the viscous torque
resisting rotation of the whole bacterium. This is mostly due
to the viscous resistance of the long flagella, "MLV

zz Vz,
which is

WLV
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zz Vz: (3)

By evaluating the ratio of the two previous balances, we
obtain an estimate for the radius of the circular motion as
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Away from the surface, WLV
zy becomes small and therefore

the radius of curvature of the trajectory will become large,
which is expected as bacteria (during a run) swim in straight
lines. (Note that both translational and rotational diffusion,
neglected in this article, will actually prevent E. coli from
swimming in a straight line for more than a few seconds.) As
is demonstrated below, the simple estimate given by Eq. 4
is consistent with a more detailed calculation for the cell
trajectory.

FIGURE 4 Physical picture (side and front
views) for the out-of-plane rotation of the

bacterium: (a) The positive y-rotation of the

cell body leads to a net viscous x-force on the

cell body,F 1
x.0. (b) The negative y-rotation of

the helical bundle leads to a net negative

viscous x-force on the flagella, F 2
x,0. The

spatial distribution of these forces leads to

a negative z-torque on the bacterium, which
makes it rotate clockwise around the z-axis.
Therefore, when viewed from above, the

bacterium swims to its right.
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Mixing on (not too) small scales

Solution: generate transverse flows to replace
diffusive transport by convective transport

! ∼ Uτ

!

hU

Typically, low Reynolds number but high Peclet number.
How long downstream will molecular diffusion mix?

Diffusion time across the channel Distance traveled

Bertsch et al. (2001) Lab Chip 1, 56 Stroock et al. (2000) Science 295, 5555

τ ∼ h2/D

!

h
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Fabrication constraints

Soft Lithography
Simplest: one step of microfabrication

Whitesides & Stroock (2001) Physics Today 54, 42

The channels will have a fixed height
Will the resulting channel be a good mixer?

Design: two degrees of freedom

structure increases the difficulty of fabrication and compli-

cates scaling down to smaller devices.

Motivated by such practical considerations in this paper,

we will be interested in characterizing the potential for mix-

ing of the simplest planar geometrical configurations ob-

tained in a single fabrication step. Two such geometries are

illustrated in Fig. 1. Suppose we fabricate a channel con-

strained between two parallel planes of constant separation,

can such a configuration mix? In order to be able to give an

answer to this question that is robust to change in flow con-

ditions, we will assume zero Reynolds number flows in the

channel. This assumption also implies that our conclusions

will remain valid in smaller flow systems of the same design.

It is known that the steady-state velocity field in a

straight channel of constant rectangular cross section is

unidirectional15 and, therefore, cannot mix except by mo-

lecular diffusion; similarly, the velocity field in a curved

channel of constant cross section and constant curvature is

unidirectional.16,27 As a consequence, the simplest potential

design for a steady-state mixer for Stokes flow is that of a

channel with variations of shape, that include changes of

both curvature and cross-sectional dimensions in the stream-

wise direction.

In order for flow in such a channel to potentially mix by

advection in the three dimensions of the channel, the velocity

field needs three nonzero components. While it is clear that

these variations in shape will lead to nonzero in-plane com-

ponents of the velocity, as would also be the case in a truly

two-dimensional channel, it is not obvious that the !third"
out-of-plane component will always be nonzero. We ask,

therefore, the following question: Under which circum-

stances is the out-of-plane component of the velocity field

always nonzero? And in this case, what is the expected mag-

nitude of the vertical flow?

The flows in a circular pipe of varying cross-section17 or

varying small curvature18 have been studied and three-

dimensional flow is obtained at zero Reynolds number. How-

ever, because the equation for the shape of a circular pipe

couples the two directions that are perpendicular to its axis

of symmetry, these results cannot be applied to the flow in a

planar geometry and a separate analysis has to be carried out.

Recently, Balsa19 studied the secondary flow in a Hele-Shaw

cell in which a vertical cylinder is immersed, at Reynolds

number unity based on the cylinder length, and showed the

presence of streamwise vorticity in a boundary layer on the

cylinder surface; an earlier study by Thompson20 focused on

viscous features.

The geometry of a generic microchannel constrained be-

tween two parallel planes with fixed separation and with no

obstacles is illustrated in Fig. 1 !top". The shape of the chan-
nel can be entirely described by two degrees of freedom: !1"
The trajectory of its centerline plane and !2" the local sym-
metric width of the channel around this centerline. We will

consider in this paper the consequences of both and will treat

each of them separately for simplicity.

The paper is organized as follows. In Sec. II A we con-

sider the case of a straight channel with varying cross section

in the direction perpendicular to both the flow and the con-

straint plane and in Sec. II B we consider the case of a curved

channel of constant cross section but varying curvature. In

both cases, under the assumption of an arbitrary but slowly

varying cross section and curvature, respectively, we show

that the velocity component perpendicular to the constraint

plane cannot be zero unless cross section and curvature are

both constant, and therefore the flow is fully three-

dimensional in all other cases. We apply these results in Sec.

III where we calculate the leading-order velocity field in the

case of a straight channel of varying cross section and illus-

trate the flow patterns on a sinusoidally varying channel. We

conclude in Sec. IV with a discussion of both the practical

advantages and limitations that these results imply for mix-

ing design. Appendices A 1 and A 2 present proofs for some

of the results used in Secs. II A and II B, respectively.

II. THREE-DIMENSIONALITY OF THE FLOW

A. Straight microchannel of varying cross section

In this section we consider the case of a straight micro-

channel of varying cross section, as illustrated in Fig. 2. A

pressure-driven flow takes place in the x direction of a chan-

nel of constant height 2h in the z direction and varying width

2h f (x/#) in the y direction, where # is the axial length scale
on which such variations occur. The equations of motion and

mass conservation for an incompressible Stokes flow are

written

$p!%$2
u, $ .u!0, !1"

with the no-slip boundary condition u(x ,y!"h f (x/#),z)
!u(x ,y ,z!"h)!0, on the four bounding surfaces. The
flow rate Q is set by upstream conditions and is constant

FIG. 1. Generic view of a microchannel constrained to remain between two

parallel planes. The design of the channel has two degrees of freedom: !1"
The trajectory of its centerline and !2" the relative width of the channel
around this centerline.

FIG. 2. Straight channel of slowly varying cross section in the y direction.
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The flow is always 3D

structure increases the difficulty of fabrication and compli-

cates scaling down to smaller devices.

Motivated by such practical considerations in this paper,
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unidirectional15 and, therefore, cannot mix except by mo-

lecular diffusion; similarly, the velocity field in a curved
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channel with variations of shape, that include changes of
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field needs three nonzero components. While it is clear that

these variations in shape will lead to nonzero in-plane com-

ponents of the velocity, as would also be the case in a truly

two-dimensional channel, it is not obvious that the !third"
out-of-plane component will always be nonzero. We ask,

therefore, the following question: Under which circum-

stances is the out-of-plane component of the velocity field

always nonzero? And in this case, what is the expected mag-

nitude of the vertical flow?

The flows in a circular pipe of varying cross-section17 or

varying small curvature18 have been studied and three-

dimensional flow is obtained at zero Reynolds number. How-

ever, because the equation for the shape of a circular pipe

couples the two directions that are perpendicular to its axis

of symmetry, these results cannot be applied to the flow in a

planar geometry and a separate analysis has to be carried out.

Recently, Balsa19 studied the secondary flow in a Hele-Shaw

cell in which a vertical cylinder is immersed, at Reynolds

number unity based on the cylinder length, and showed the

presence of streamwise vorticity in a boundary layer on the

cylinder surface; an earlier study by Thompson20 focused on

viscous features.

The geometry of a generic microchannel constrained be-

tween two parallel planes with fixed separation and with no

obstacles is illustrated in Fig. 1 !top". The shape of the chan-
nel can be entirely described by two degrees of freedom: !1"
The trajectory of its centerline plane and !2" the local sym-
metric width of the channel around this centerline. We will

consider in this paper the consequences of both and will treat

each of them separately for simplicity.

The paper is organized as follows. In Sec. II A we con-

sider the case of a straight channel with varying cross section

in the direction perpendicular to both the flow and the con-

straint plane and in Sec. II B we consider the case of a curved

channel of constant cross section but varying curvature. In

both cases, under the assumption of an arbitrary but slowly

varying cross section and curvature, respectively, we show

that the velocity component perpendicular to the constraint

plane cannot be zero unless cross section and curvature are

both constant, and therefore the flow is fully three-

dimensional in all other cases. We apply these results in Sec.

III where we calculate the leading-order velocity field in the

case of a straight channel of varying cross section and illus-

trate the flow patterns on a sinusoidally varying channel. We

conclude in Sec. IV with a discussion of both the practical

advantages and limitations that these results imply for mix-

ing design. Appendices A 1 and A 2 present proofs for some

of the results used in Secs. II A and II B, respectively.

II. THREE-DIMENSIONALITY OF THE FLOW

A. Straight microchannel of varying cross section

In this section we consider the case of a straight micro-

channel of varying cross section, as illustrated in Fig. 2. A

pressure-driven flow takes place in the x direction of a chan-

nel of constant height 2h in the z direction and varying width

2h f (x/#) in the y direction, where # is the axial length scale
on which such variations occur. The equations of motion and

mass conservation for an incompressible Stokes flow are

written

$p!%$2
u, $ .u!0, !1"

with the no-slip boundary condition u(x ,y!"h f (x/#),z)
!u(x ,y ,z!"h)!0, on the four bounding surfaces. The
flow rate Q is set by upstream conditions and is constant

FIG. 1. Generic view of a microchannel constrained to remain between two

parallel planes. The design of the channel has two degrees of freedom: !1"
The trajectory of its centerline and !2" the relative width of the channel
around this centerline.

FIG. 2. Straight channel of slowly varying cross section in the y direction.
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the channel on which this local curvature changes. In this

geometry, and using the notations u!(u ,v ,w) for the veloc-
ity field, it is possible after some algebra to write the dimen-

sional Stokes equation !1" under the form

1
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and the continuity equation is written
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!!R!s ""n "v ""

$w

$z
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The two sets of equations !16" and !17" are associated with
the no-slip boundary condition on the walls of the channel

u(s ,n!%d ,z)!u(s ,n ,z!%h)!0, as well as with the con-
dition of constant flow rate along the channel

#
#h

h #
#d

d

!u.es"dzdn!Q . !18"

As in Sec. II A, we now assume a slowly varying curvature,

i.e., we assume that both h/%&1 and d/%&1. Equations
!16"–!18" can be nondimensionalized by scaling lengths, ve-
locities and pressure by
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where we denoted the aspect ratio (!h/d!O(1). Defining
)!d/R0 and '!h/%&1, and dropping the tildes in the di-
mensionless variables for convenience, the dimensionless

Stokes equation is
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and the dimensionless continuity equation
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Note that ) is not necessary small in actual MEMS

applications.22 We then look for a regular perturbation ex-

pansion for both the dimensionless velocity and pressure

fields under the form

!u ,v ,w ,p "!!u0 ,v0 ,w0 ,p0""'2!u2 ,v2 ,w2 ,p2"

"O!'4". !22"

The leading-order O('0) of the Stokes equation !16" is

FIG. 3. Curved microchannel of constant cross section and slowly varying

planar curvature.
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indeed vertically displaced as they are advected along the

channel. Note that the similar plots for the contracting part of

the channel were not included here as they can be deduced

from those in Figs. 4 and 5 by symmetry of Stokes’s equa-

tion.

We also note in Fig. 4 that the qualitative picture for the

isovalues of v0 do not vary much between the point of mini-

mum width (x!3!/2) and the point of maximum width (x

!5!/2). In contrast to v0 , the distribution of vertical veloc-
ity w0 is modified appreciably: It changes from a monotonic

variation across the channel "left picture in Fig. 4#c$% to a
variation with local minimum–maximum in the middle of

the channel and global maximum–minimum near the chan-

nel walls "middle and right picture in Fig. 4#c$%. Moreover, as

FIG. 4. Illustration of the leading-order three-dimensional flow in the straight planar channel of varying dimensionless cross section given by f (x)!1
"0.7 sin x. Top: Axial view of the channel. Bottom: Plots of the leading-order dimensionless cross-sectional velocity field (v0 ,w0) and axial vorticity &0 at

three locations along the channel: x!5.25, 6.15, and 7.05; #a$: in-plane velocity plots #the velocities are normalized by their maximum in-plane values$; #b$:
isovalues of the y-component v0 of the velocity, from Eq. #43$; #c$: isovalues of the z-component of the velocity w0 , from Eq. #47$; #d$: isovalues of the
x-component of the vorticity &0 , from Eq. #51$.
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Self-assembly on small scales
might in some circumstances be practical
and economical), self-assembly may of-
fer the opportunity to form structures in
regions inaccessible to robotic arms. It
may even be an interesting strategy for
the assembly of large structures in envi-
ronments (for example the microgravity
of space or the ocean) where lateral
mobility is relatively unhindered by the
effects of gravity and friction.

Designing New, Self-Assembling Systems
We believe that the design of systems of
components with nano- to macroscale di-
mensions for self-assembly can be aided
enormously by considering analogies with
molecular systems (32). To test this belief,
we have explored one of many imaginable
systems of self-assembling macroscopic
components: systems based on capillary
interactions (Fig. 2). These studies have
demonstrated that it is practical to design
new systems of self-assembling compo-
nents essentially de novo and suggest that
such systems can find rapid application.
The objective of this program has been
more to demonstrate the usefulness of
transferring concepts from molecular sys-
tems to these larger systems than to solve
practical problems, but the progression
from fundamental studies to applications
has been astonishingly rapid.

Our work has involved millimeter-scale
components either floating at a fluid–
f luid interface (33, 34) or suspended in an
approximately isodense f luid medium
(35–37). Capillary interactions (that is,
forces resulting from minimizing the con-
tribution of interfaces to free energies by
minimizing interfacial areas) are particu-
larly useful for these sizes and in these
environments (38). For components float-
ing at a liquid–liquid or liquid–vapor in-
terface, the nature of the capillary inter-
actions can be tailored by controlling the
shape of the menisci at the interface be-
tween the components and the liquid (39).
For components in suspension, capillary
interactions between drops of liquid with
high interfacial free energy provide the
attractive interactions. Molten solder is
one particularly useful type of liquid in
these systems (40, 41). It has a high inter-
facial free energy and thus provides a
strong interaction between components;
when it solidifies below its melting point,
it provides a mechanically strong and elec-
trically conducting connection between
components. Electrical conductivity is
crucial to building self-assembling micro-
electronic systems (42).

The most complex structures that we
have prepared from millimeter-sized com-
ponents by self-assembly are still too prim-
itive to be useful. However, another form
of macroscopic self-assembly, the fluidic
self-assembly pioneered by Jeh and Smith
(43) and Howe and coworkers (44), is

being developed commercially (Alien
Technology, Morgan Hill, CA, www.
alientechnology.com!technology!over-
view.html). In this technique, a suspension
of small (70–180-!m) polyhedral compo-
nents in a fluid is allowed to flow across a
templating surface having a series of in-
dentations complementary in shape to
these components. When one of these
components falls into an indentation in
the correct orientation, its surface is f lush
with the surface of the template, and it
escapes the shear of the flowing fluid;
when the component is not correctly ori-
ented with respect to the cavity, it is not
flush with the surface and is removed
from the cavity by shear. Another com-
ponent then has the opportunity to fill the
cavity correctly.

Defects, Designed Asymmetries,
Constrained Self-Assembly, and
Templating
One important and still unanswered
question in self-assembly (at all scales,
from molecular to macroscopic) is what
range of structures can be formed, what
are the extent and perfection of these
structures, and what is the nature of their
defects? The character of defects, in
principle, might be quite different in
molecular and macroscopic self-assem-
bly. A molecular crystal, for example, has
many opportunities to minimize its free
energy. The characteristic on- and off-
rates describing a macroscopic compo-
nent entering and leaving an ordered,
macroscopic aggregate will be orders of

Fig. 2. Examples of two-dimensional (A and B) and 3D (C–F) structures, self-assembled in systems of
macroscopic components interacting via capillary interactions. Open hexagonal array (A; reprinted
with permission from ref. 33, copyright 1997 American Association for the Advancement of Science)
and hexagonal lattice formed around circular templates (B; reprinted with permission from ref. 48,
copyright 2000 American Chemical Society) self-assembled from poly(dimethylsiloxane) plates float-
ing at the interface between perfluodecalin and water. (C) Spherical structure formed by self-assembly
of hexagonal metal plates on the surface of a drop of perfluodecalin in water (reprinted with
permission from ref. 49, copyright 1998 American Chemical Society). (D) Compact 3D structure formed
by self-folding of a string of tethered, polymeric polyhedra (reprinted with permission from ref. 54,
copyright 2002 American Chemical Society). (E) Large crystal self-assembled from micrometer-sized
hexagonal metal plates (reprinted with permission from ref. 36, copyright 2001 American Chemical
Society). (F) Aggregate with electrical connectivity self-assembled from polyhedral, polymer compo-
nents bearing solder patterns of wires and dots (reprinted with permission from ref. 42, copyright
2000 American Association for the Advancement of Science).
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Reducing length scales: 
Design an energy landscape

Usually many local minima

Ex: Packing of N spheres using vdW forces

Number of Spheres              6    7    8     9    10    11    12    13
Number of Local minima      2    4    8   18    57  145  366  988 

Hoare & McInnes (1976) Faraday Discuss. Chem. Soc. 61, 12

adopt point symmetries that are inconsistent
with fcc order. For example, local polytetra-
hedral packings with fivefold symmetry are
energetically favored in undercooled metallic
liquids (5–7). The incompatibility of these
packings with long-range order inhibits crys-
tal nucleation and induces the formation of
metastable phases (7). Similar arguments in-
volving conflicting optimal packing criteria
at the local and bulk scales are central to
theories of glass formation (8) and jamming
(9, 10). A better understanding of how finite
groups of spheres organize themselves may
therefore help us decipher and control the
structure of matter at many different length
scales. To this end, a primary scientific chal-
lenge is to determine the minimization prin-
ciple that governs the shapes of finite pack-
ings for a given set of physical constraints.

We show that under a compressive force,
small numbers (n ! 2 to 15) of hard spheres
pack into distinct and identical polyhedra for
each value of n. These configurations (clusters)
are related to a fundamental minimization prin-
ciple that was only recently discovered within
the mathematics literature (11). The clusters are
formed in a three-phase colloidal system consist-
ing of evaporating oil droplets suspended in
water, with n micrometer-sized polymer spheres
(microspheres) attached to the droplet surfaces.
In this system, capillary forces provide a com-
pressive force that is spherically symmetric until
packing constraints break the symmetry. A key
feature of our approach is that for a given value
of n, the packing process is reproducible and can
be examined dynamically. In addition, we are
able to isolate clusters of a given n in macro-
scopic quantities, thus providing a new class of
nonspherical colloidal particles with which dif-

ferent packing and crystallization motifs can
be studied.
Packing process. The principal compo-

nents of our packings are equal-sized, cross-
linked polystyrene microspheres, 844 nm in
diameter [2.5% polydispersity (12)], with sul-
fate groups covalently bonded to the surface
(13). In pure water, the sulfate groups disso-
ciate, charging the surfaces of the spheres and
preventing van der Waals attractions from
bringing them together. In an organic solvent
such as toluene, which is a good solvent for
polystyrene, the dissociation of sulfate
groups is limited, but the van der Waals
forces between the particles are much smaller
than in water (14). The particles swell with
the solvent and interact only through a short-
ranged steric (entropic) repulsion. To a good
approximation, they act as hard spheres (15).

To pack these spheres together, we use a
system that contains both liquids (13). We dis-
perse the spheres in toluene (Fig. 1A), add wa-
ter, and mix to create an oil-in-water emulsion
consisting of small droplets of toluene ranging
from 1 to 10 "m in diameter (Fig. 1B). The
particles are strongly bound to the droplet inter-
faces by surface tension (16). We preferentially
evaporate the toluene from the system, forcing
the hard-sphere–like particles in each droplet to
pack together (Fig. 1C). As Fig. 1D shows, the
critical feature of the evaporation process is a
mechanically stable intermediate stage called a
spherical packing, formed when the particles
touch one another on the surface of the droplet.
Removing more oil at this stage causes the
droplet to deform, generating capillary forces
that ultimately lead to a rapid (#33 ms) rear-
rangement of the particles. When the last of the
toluene evaporates, the particles deswell, at

which point the interparticle van der Waals at-
tractions increase and the particles stick to one
another, forming a small colloidal aggregate.
Capillary forces thus pack the particles into their
final configuration while they act as hard
spheres, and van der Waals forces subsequently
cement the spheres together. A side effect of this
packing method is that the surfaces of the par-
ticles on the outside of the cluster are exposed to
water at an earlier stage of evaporation. The
dissociation of surface charges on these outer
particles prevents the cluster as a whole from
aggregating with other clusters.
Geometry of microsphere packings. Af-

ter all the toluene has evaporated, we are left
with a suspension of clusters of different sizes.
Each cluster comes from a single droplet con-
taining n spheres, but n varies from cluster to
cluster because the initial droplets are not uni-
form in size. Centrifugation in a density gradi-
ent (13) allows us to separate the clusters on the
basis of differences in sedimentation velocity,
or average hydrodynamic radius (17). Although
all of our microspheres have the same mass, the
effective surface area and the sedimentation
velocity of a cluster of these particles vary
greatly with their configuration. The separation
yields a set of sharp, well-separated bands (Fig.
2), showing that only specific configurations
emerge from our packing process.

In fact, the separation reveals a remark-
able result: Clusters of a given n are all
identical, as determined by extracting the
bands from the density gradient (insets, Fig.
2) and examining the clusters with the optical
microscope. The structures of the clusters are
shown in Fig. 3. If we treat the center of each
sphere as a vertex of a polyhedron, the first
few observed configurations are the line seg-

Fig. 1. Optical micrographs and diagrams (insets) of the packing process.
(A) Polymer particles swollen and dispersed in toluene (shown in blue).
(B) Emulsion of toluene droplets with particles, still swollen, bound to the
interfaces. (C) Clusters after toluene evaporation. These are stabilized
against further aggregation by the dissociation of charged groups on the
surfaces of the particles. (D) A time series of micrographs taken during

evaporation of the toluene, showing the evolution of the system be-
tween (B) and (C). Particles freely diffuse about the surface of the droplet
until, as more toluene evaporates, they touch one another, forming a
spherical packing (blue arrowhead). Deformation of the interface then
leads to a rapid rearrangement (orange arrowhead) to a cluster. The final
configuration of this seven-sphere cluster is also shown in Fig. 3.
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Final packings are unique 
(no local minima) 

Manoharan et al. (2004) 
Science 301, 483
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Simulations

Numerical simulations of hard spheres on droplet reproduce the packings obtained by Manoharan et al.
Lauga & Brenner (2004) Phys. Rev. Lett. 93, 238301

Newtonian liquid

Experimental pictures from Manoharan et al. (2004) Science 301, 483



  

Copyright 2006 Eric Lauga

Theory

Tetrahedron Octahedron Icosahedron

are bound to a continuous and smooth sur-
face, the droplet interface, and there does not
appear to be a route to an internal sphere
upon collapse. The second moment does,
however, decrease in the rearrangement, and
the configurations we observe are consistent
at each n, albeit with many more small vari-
ations in the packing than at lower n. Mini-
mization of higher-order moments, defined
by Mk ! " i

n
!1 #ri $ r0#

k, where k is any in-
teger greater than 2, does not account for the
n % 12 configurations. For these cases, Mk (at
least up to k ! 7) is smaller for the minimal
second moment packings than for the pack-
ings we observe. For n ! 12, minimization of
higher moments appears to favor structures
that are more isotropic, so that a spherical
packing of eight spheres has a lower M3 than
our eight-sphere cluster, and a spherical pack-
ing of 11 spheres has a lower M4 than our
11-sphere cluster. The second moment thus
remains the most appropriate measure of den-
sity. Minimization of the second moment
subject to a constraint (for example, that no
internal spheres may exist) might account for

all the cluster configurations we observe. In
any case, the configurations for n % 11 are an
even more unusual set of packings, with a
notable lack of symmetry for the 13- and
14-sphere clusters, both of which are chiral,
and high symmetry for the 12-sphere (Ih point
group) and 15-sphere (D3h) clusters.
Colloidal dispersions of clusters. From

a technological perspective, the salient fea-
ture of our process is that it consistently
yields a specific set of structures with unique
and interesting symmetries. We can exploit
this feature using the separation procedure we
describe above. In the density gradient tube
shown in Fig. 2, there are billions (108 to
1010, or 0.1 to 10 mg) of each type of cluster.
Thus, by separating the bands, we can pro-
duce entire colloidal dispersions of sphere
doublets, tetrahedra, or any of the larger,
more exotic polyhedra in macroscopic quan-
tities. These dispersions remain stable indef-
initely, with no cluster breakup or intercluster
aggregation. Static light-scattering measure-
ments on dilute cluster suspensions show ex-
cellent agreement with rigorous calculations

of scattering from idealized sphere packings
of the same symmetries (Fig. 4), indicating
that each cluster fraction is stable and well
separated. There are other methods for mak-
ing colloidal clusters (28, 29), but because
these rely on adsorption onto patterned sub-
strates, they have intrinsically small yields (105

clusters) and require that the packings be con-
structed in a layer-by-layer fashion, which can-
not reproduce all the structures shown here.
Concluding remarks. Our observations

support the idea of the second moment of the
mass distribution as a simple, useful defini-
tion of optimal packing in certain colloidal
systems. This minimization principle may
provide some insights into the local processes
underlying the densification of bulk powder
slurries or wet granular materials. Beyond
these applications, though, lies a new role for
colloidal microspheres: as model systems for
studying packing itself. Optimal finite sphere
packings are still poorly understood mathe-
matically and scientifically, and even our rel-
atively simple system produces a sequence of
packings predicted only within the past dec-

Fig. 3. Cluster configurations at
each n, as determined by optical
and electron microscopy. Some
shrinkage and deformation of the
spheres occur during drying and ex-
posure to the electron beam, but
the configurations of particles re-
main the same as those observed in
situ optically. (A) Left columns
show electron micrographs of the
clusters. All clusters of a given n
have identical structures. Right col-
umns illustrate the polyhedra
formed by drawing lines from the
center of each particle to its neigh-
bors. Below are the names of the
polyhedra [from (18)] and Schön-
flies point groups. Middle columns
show computer renderings of
sphere configurations that mini-
mize the second moment of the
mass distribution (11), which
match our packings. Not shown are
the line segment (n ! 2, D&h) and
the triangle (n ! 3, D3h). (B) Clus-
ters with n % 11 differ increasing-
ly from minimal second moment
structures. We observe some small
variations in the packing from clus-
ter to cluster for n % 12.
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are bound to a continuous and smooth sur-
face, the droplet interface, and there does not
appear to be a route to an internal sphere
upon collapse. The second moment does,
however, decrease in the rearrangement, and
the configurations we observe are consistent
at each n, albeit with many more small vari-
ations in the packing than at lower n. Mini-
mization of higher-order moments, defined
by Mk ! " i

n
!1 #ri $ r0#

k, where k is any in-
teger greater than 2, does not account for the
n % 12 configurations. For these cases, Mk (at
least up to k ! 7) is smaller for the minimal
second moment packings than for the pack-
ings we observe. For n ! 12, minimization of
higher moments appears to favor structures
that are more isotropic, so that a spherical
packing of eight spheres has a lower M3 than
our eight-sphere cluster, and a spherical pack-
ing of 11 spheres has a lower M4 than our
11-sphere cluster. The second moment thus
remains the most appropriate measure of den-
sity. Minimization of the second moment
subject to a constraint (for example, that no
internal spheres may exist) might account for

all the cluster configurations we observe. In
any case, the configurations for n % 11 are an
even more unusual set of packings, with a
notable lack of symmetry for the 13- and
14-sphere clusters, both of which are chiral,
and high symmetry for the 12-sphere (Ih point
group) and 15-sphere (D3h) clusters.
Colloidal dispersions of clusters. From

a technological perspective, the salient fea-
ture of our process is that it consistently
yields a specific set of structures with unique
and interesting symmetries. We can exploit
this feature using the separation procedure we
describe above. In the density gradient tube
shown in Fig. 2, there are billions (108 to
1010, or 0.1 to 10 mg) of each type of cluster.
Thus, by separating the bands, we can pro-
duce entire colloidal dispersions of sphere
doublets, tetrahedra, or any of the larger,
more exotic polyhedra in macroscopic quan-
tities. These dispersions remain stable indef-
initely, with no cluster breakup or intercluster
aggregation. Static light-scattering measure-
ments on dilute cluster suspensions show ex-
cellent agreement with rigorous calculations

of scattering from idealized sphere packings
of the same symmetries (Fig. 4), indicating
that each cluster fraction is stable and well
separated. There are other methods for mak-
ing colloidal clusters (28, 29), but because
these rely on adsorption onto patterned sub-
strates, they have intrinsically small yields (105

clusters) and require that the packings be con-
structed in a layer-by-layer fashion, which can-
not reproduce all the structures shown here.
Concluding remarks. Our observations

support the idea of the second moment of the
mass distribution as a simple, useful defini-
tion of optimal packing in certain colloidal
systems. This minimization principle may
provide some insights into the local processes
underlying the densification of bulk powder
slurries or wet granular materials. Beyond
these applications, though, lies a new role for
colloidal microspheres: as model systems for
studying packing itself. Optimal finite sphere
packings are still poorly understood mathe-
matically and scientifically, and even our rel-
atively simple system produces a sequence of
packings predicted only within the past dec-

Fig. 3. Cluster configurations at
each n, as determined by optical
and electron microscopy. Some
shrinkage and deformation of the
spheres occur during drying and ex-
posure to the electron beam, but
the configurations of particles re-
main the same as those observed in
situ optically. (A) Left columns
show electron micrographs of the
clusters. All clusters of a given n
have identical structures. Right col-
umns illustrate the polyhedra
formed by drawing lines from the
center of each particle to its neigh-
bors. Below are the names of the
polyhedra [from (18)] and Schön-
flies point groups. Middle columns
show computer renderings of
sphere configurations that mini-
mize the second moment of the
mass distribution (11), which
match our packings. Not shown are
the line segment (n ! 2, D&h) and
the triangle (n ! 3, D3h). (B) Clus-
ters with n % 11 differ increasing-
ly from minimal second moment
structures. We observe some small
variations in the packing from clus-
ter to cluster for n % 12.
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are bound to a continuous and smooth sur-
face, the droplet interface, and there does not
appear to be a route to an internal sphere
upon collapse. The second moment does,
however, decrease in the rearrangement, and
the configurations we observe are consistent
at each n, albeit with many more small vari-
ations in the packing than at lower n. Mini-
mization of higher-order moments, defined
by Mk ! " i
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k, where k is any in-
teger greater than 2, does not account for the
n % 12 configurations. For these cases, Mk (at
least up to k ! 7) is smaller for the minimal
second moment packings than for the pack-
ings we observe. For n ! 12, minimization of
higher moments appears to favor structures
that are more isotropic, so that a spherical
packing of eight spheres has a lower M3 than
our eight-sphere cluster, and a spherical pack-
ing of 11 spheres has a lower M4 than our
11-sphere cluster. The second moment thus
remains the most appropriate measure of den-
sity. Minimization of the second moment
subject to a constraint (for example, that no
internal spheres may exist) might account for

all the cluster configurations we observe. In
any case, the configurations for n % 11 are an
even more unusual set of packings, with a
notable lack of symmetry for the 13- and
14-sphere clusters, both of which are chiral,
and high symmetry for the 12-sphere (Ih point
group) and 15-sphere (D3h) clusters.
Colloidal dispersions of clusters. From

a technological perspective, the salient fea-
ture of our process is that it consistently
yields a specific set of structures with unique
and interesting symmetries. We can exploit
this feature using the separation procedure we
describe above. In the density gradient tube
shown in Fig. 2, there are billions (108 to
1010, or 0.1 to 10 mg) of each type of cluster.
Thus, by separating the bands, we can pro-
duce entire colloidal dispersions of sphere
doublets, tetrahedra, or any of the larger,
more exotic polyhedra in macroscopic quan-
tities. These dispersions remain stable indef-
initely, with no cluster breakup or intercluster
aggregation. Static light-scattering measure-
ments on dilute cluster suspensions show ex-
cellent agreement with rigorous calculations

of scattering from idealized sphere packings
of the same symmetries (Fig. 4), indicating
that each cluster fraction is stable and well
separated. There are other methods for mak-
ing colloidal clusters (28, 29), but because
these rely on adsorption onto patterned sub-
strates, they have intrinsically small yields (105

clusters) and require that the packings be con-
structed in a layer-by-layer fashion, which can-
not reproduce all the structures shown here.
Concluding remarks. Our observations

support the idea of the second moment of the
mass distribution as a simple, useful defini-
tion of optimal packing in certain colloidal
systems. This minimization principle may
provide some insights into the local processes
underlying the densification of bulk powder
slurries or wet granular materials. Beyond
these applications, though, lies a new role for
colloidal microspheres: as model systems for
studying packing itself. Optimal finite sphere
packings are still poorly understood mathe-
matically and scientifically, and even our rel-
atively simple system produces a sequence of
packings predicted only within the past dec-

Fig. 3. Cluster configurations at
each n, as determined by optical
and electron microscopy. Some
shrinkage and deformation of the
spheres occur during drying and ex-
posure to the electron beam, but
the configurations of particles re-
main the same as those observed in
situ optically. (A) Left columns
show electron micrographs of the
clusters. All clusters of a given n
have identical structures. Right col-
umns illustrate the polyhedra
formed by drawing lines from the
center of each particle to its neigh-
bors. Below are the names of the
polyhedra [from (18)] and Schön-
flies point groups. Middle columns
show computer renderings of
sphere configurations that mini-
mize the second moment of the
mass distribution (11), which
match our packings. Not shown are
the line segment (n ! 2, D&h) and
the triangle (n ! 3, D3h). (B) Clus-
ters with n % 11 differ increasing-
ly from minimal second moment
structures. We observe some small
variations in the packing from clus-
ter to cluster for n % 12.
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areboundtoacontinuousandsmoothsur-
face,thedropletinterface,andtheredoesnot
appeartobearoutetoaninternalsphere
uponcollapse.Thesecondmomentdoes,
however,decreaseintherearrangement,and
theconfigurationsweobserveareconsistent
ateachn,albeitwithmanymoresmallvari-
ationsinthepackingthanatlowern.Mini-
mizationofhigher-ordermoments,defined
byMk!"i

n
!1#ri$r0#

k
,wherekisanyin-

tegergreaterthan2,doesnotaccountforthe
n%12configurations.Forthesecases,Mk(at
leastuptok!7)issmallerfortheminimal
secondmomentpackingsthanforthepack-
ingsweobserve.Forn!12,minimizationof
highermomentsappearstofavorstructures
thataremoreisotropic,sothataspherical
packingofeightsphereshasalowerM3than
oureight-spherecluster,andasphericalpack-
ingof11sphereshasalowerM4thanour
11-spherecluster.Thesecondmomentthus
remainsthemostappropriatemeasureofden-
sity.Minimizationofthesecondmoment
subjecttoaconstraint(forexample,thatno
internalspheresmayexist)mightaccountfor

alltheclusterconfigurationsweobserve.In
anycase,theconfigurationsforn%11arean
evenmoreunusualsetofpackings,witha
notablelackofsymmetryforthe13-and
14-sphereclusters,bothofwhicharechiral,
andhighsymmetryforthe12-sphere(Ihpoint
group)and15-sphere(D3h)clusters.
Colloidaldispersionsofclusters.From

atechnologicalperspective,thesalientfea-
tureofourprocessisthatitconsistently
yieldsaspecificsetofstructureswithunique
andinterestingsymmetries.Wecanexploit
thisfeatureusingtheseparationprocedurewe
describeabove.Inthedensitygradienttube
showninFig.2,therearebillions(10

8
to

10
10

,or0.1to10mg)ofeachtypeofcluster.
Thus,byseparatingthebands,wecanpro-
duceentirecolloidaldispersionsofsphere
doublets,tetrahedra,oranyofthelarger,
moreexoticpolyhedrainmacroscopicquan-
tities.Thesedispersionsremainstableindef-
initely,withnoclusterbreakuporintercluster
aggregation.Staticlight-scatteringmeasure-
mentsondiluteclustersuspensionsshowex-
cellentagreementwithrigorouscalculations

ofscatteringfromidealizedspherepackings
ofthesamesymmetries(Fig.4),indicating
thateachclusterfractionisstableandwell
separated.Thereareothermethodsformak-
ingcolloidalclusters(28,29),butbecause
theserelyonadsorptionontopatternedsub-
strates,theyhaveintrinsicallysmallyields(10

5

clusters)andrequirethatthepackingsbecon-
structedinalayer-by-layerfashion,whichcan-
notreproduceallthestructuresshownhere.
Concludingremarks.Ourobservations

supporttheideaofthesecondmomentofthe
massdistributionasasimple,usefuldefini-
tionofoptimalpackingincertaincolloidal
systems.Thisminimizationprinciplemay
providesomeinsightsintothelocalprocesses
underlyingthedensificationofbulkpowder
slurriesorwetgranularmaterials.Beyond
theseapplications,though,liesanewrolefor
colloidalmicrospheres:asmodelsystemsfor
studyingpackingitself.Optimalfinitesphere
packingsarestillpoorlyunderstoodmathe-
maticallyandscientifically,andevenourrel-
ativelysimplesystemproducesasequenceof
packingspredictedonlywithinthepastdec-

Fig.3.Clusterconfigurationsat
eachn,asdeterminedbyoptical
andelectronmicroscopy.Some
shrinkageanddeformationofthe
spheresoccurduringdryingandex-
posuretotheelectronbeam,but
theconfigurationsofparticlesre-
mainthesameasthoseobservedin
situoptically.(A)Leftcolumns
showelectronmicrographsofthe
clusters.Allclustersofagivenn
haveidenticalstructures.Rightcol-
umnsillustratethepolyhedra
formedbydrawinglinesfromthe
centerofeachparticletoitsneigh-
bors.Belowarethenamesofthe
polyhedra[from(18)]andSchön-
fliespointgroups.Middlecolumns
showcomputerrenderingsof
sphereconfigurationsthatmini-
mizethesecondmomentofthe
massdistribution(11),which
matchourpackings.Notshownare
thelinesegment(n!2,D&h)and
thetriangle(n!3,D3h).(B)Clus-
terswithn%11differincreasing-
lyfromminimalsecondmoment
structures.Weobservesomesmall
variationsinthepackingfromclus-
tertoclusterforn%12.
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Rearrangement of particles is uniquely determined by geometry. 

Some final packings correspond to surface jamming

Simple model
N = 9

N = 4 N = 6 N = 12

Full simulations

Experiments

Experimental pictures from Manoharan et al. (2004) Science 301, 483
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How to create different packings

4 spheres with 160°
5 spheres with 20°

6 spheres with 160°
3 spheres with 20°

8 spheres with 160°
1 spheres with 20°

(a) (b) (c)

Lauga & Brenner (2004) Phys. Rev. Lett. 93, 238301
Schnall-Levin, Lauga & Brenner (2006) Langmuir 22, 4547
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stretched along the direction of flow; in contrast, the uniform EOF does not suffer

this defect.

In most common cases, convective transport is faster than diffusive trans-

port, even though the length scales are small. In other words, the Peclet num-

ber, P = uh/Dm , is usually large, where u is the average axial flow speed,

Dm is the molecular diffusivity, and h is the typical cross-sectional dimension

of the microchannel. Common values of these parameters are u = 0.1–1 cm/s,

h = 10−3–10−2 cm, and Dm = 10−7–10−5 cm2/sec, where the smaller value cor-
responds to macromolecules such as proteins. Therefore, 10 < P < 105.

3.2. Laminar Flow Patterning and Confinement

Laminar flows with high Peclet numbers P are ideal for the controlled delivery

and confinement of reagents. Figure 5 shows a common geometry for this type

of experiment, in which two streams of distinct chemical reagents are injected

Figure 5 Diffusive mixing between two laminar streams. (a) Schematic diagrams

of the channel geometry (Ismagilov et al. 2000). The solution on the right contains

a calcium-dependent fluorophore, Fluo-3. The solution on the left contains calcium.

In water, Fluo-3 and calcium form a fluorescent complex at a diffusion limited rate.

(b) Fluorescence micrograph that shows a top view of a channel as in (a). The fluores-

cent intermixed region appears lighter than the background. The right-left asymmetry

of the intermixed region arises because calcium diffuses more rapidly than Fluo-3.

(c) Confocal fluorescence micrographs of two vertical cross sections of the channel.

(d) Experimentally measured scaling of the width of the diffusively mixed region as a

function of the axial distance down the channel. The circles represent values measured

in the center of the channel (x = 0), and the triangles represent values measured near

the bottom wall (x = −H/2).
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FIG. 1 (Color) Sophisticated networks of fluidic microchan-
nels allow for unprecedented automation and parallelization
of biological and chemical systems. Pictured is a large-scale,
integrated chip to measure protein interactions. The colored
control lines manipulate valves that function as gates and
pumps, which drive reagent solutions through the uncolored
channels to be stored in circular chambers for subsequent re-
action. (Figure courtesy of S. Maerkl).

allowing automation to proceed to scales that will rival
electronic integrated circuits (Fig. 1).

Although most current effort in microfluidics con-
cerns devices with applications in chemistry, biology, and
medicine, there are also applications in the physical sci-
ences for control systems and heat management (e.g.
Zhang et al. (2002)), energy generation (e.g. Choban
et al. (2004) and Ferrigno et al. (2002)), and display
technology (e.g. Hayes and Feenstra (2003)). There is a
long history of using fluidics as control systems, ranging
from logic devices to thrust reversers in aircraft; this pro-
gram ultimately foundered in part because scaling prop-
erties of the fluid physics prevented miniaturization (Fos-
ter and Parker, 1970; Humphrey and Tarumoto, 1965;
Joyce, 1983). Liquid crystal displays and ink jet print-
ers (e.g. Bassous et al. (1977)) are ubiquitous consumer
products that can be thought of as microfluidic devices,
and have had enormous industrial impact. As fuel cells
become more widely deployed, it is likely that they will
ultimately incorporate some sort of microfluidic plumb-
ing.

One important manner in which microfluidics differs
from microelectronics is that the fundamental physics
changes more rapidly as the size scale is decreased. De-
spite decades of ever smaller transistors and higher den-
sities in semiconductor electronics, the industry has yet
to reach the length scale where scaling has caused a
qualitative change in physical phenomena, e.g. from the
classical to the quantum regime. Single electron transis-
tors and other mesoscopic devices have been developed,
yet remain exotic objects of laboratory exploration. By
contrast, fluidic systems can rather quickly reach length
scales where the fundamental fluid physics changes dra-

matically. One of the best-known examples is that mass
transport in microfluidic devices is generally dominated
by viscous dissipation, and inertial effects are generally
negligible. Since inertia provides the nonlinearity that is
responsible for numerous instabilities and for turbulence
itself, its loss might seem to render microfluidic flows un-
interesting.

In fact, we argue that the opposite is true. Microflu-
idic physics is quite rich, drawing from much of clas-
sical physics and chemistry – fluid mechanics, electro-
statics, thermodynamics, statistical mechanics, elasticity,
and polymer physics, to name a few. Notably, the small
dimensions that quell the inertial nonlinearity bring other
physical phenomena, less familiar on our ‘macro-scale’, to
prominence.

Following the invention of the transistor, some con-
cerned themselves primarily with designing and building
circuits to perform various computational tasks; whereas
others continued to study and explore the science under-
lying semiconductors and microcircuits. Similarly in mi-
crofluidics: some focus primarily on developing microflu-
idic devices and tools (during which, of course, scientific
issues arise and are explored); whereas others focus on ex-
ploring and understanding the physics of these systems.

In this spirit, the focus of this review lies explicitly
with the physics underlying microfluidic devices, empha-
sizing the variety of physical phenomena and the manner
in which they have been exploited. Perspective pieces,
both early (Manz et al., 1993; Ramsey et al., 1995) and
more recent (Figeys and Pinto, 2000; Hong and Quake,
2003; Meldrum and Holl, 2002; Ramsey, 1999; Stone and
Kim, 2001) describe the promise, progress, and challenges
for the field. ‘Lab on a chip’ or ‘micro total analy-
sis systems’ (Manz et al., 1993) have recently been re-
viewed in a pair of companion articles, one focusing on
the history and overall approach (Reyes et al., 2002),
and the other on standard operations in analytical chem-
istry and their microfluidic applications (Auroux et al.,
2002). Reviews of more specific applications for microflu-
idics include protein crystallization (Hansen and Quake,
2003), proteomics (Dolnik, 1997, 1999; Dolnik and Hut-
terer, 2001; Figeys and Pinto, 2001; Hancock et al., 2002;
Lion et al., 2003), MEMS-based microfluidics (Ho and
Tai, 1998; Verpoorte and De Rooij, 2003), micropumps
(Laser and Santiago, 2004; Nguyen et al., 2002), clinical
and forensic applications (Thormann et al., 2001; Ver-
poorte, 2002), sample pretreatment (Lichtenberg et al.,
2002) and molecular diagnostics (Landers, 2003). The
advantages and applications of ‘soft’ (rather than sili-
con) microfluidics have been reviewed (McDonald et al.,
2000; Ng et al., 2002; Quake and Scherer, 2000; Sia and
Whitesides, 2003; Whitesides et al., 2001; Whitesides and
Stroock, 2001). Finally, separation techniques, partic-
ularly for nucleic acids, occupy a central role in many
microfluidic devices. Specific reviews include: DNA sep-
aration and analysis methods in the microfluidic context
(Ugaz et al., 2004), DNA separation in microfabricated
devices (Tegenfeldt et al., 2004), the theory of polymer
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cussed below.) A mixed collection of fragments evolves
into ‘bands’ separated by a distance ∆Z ∼ ∆Ut, and
whose widths grow like ∆W ∼ (Dt)1/2. Assuming the
different bands to travel with velocity scale U0, an esti-
mate for effective separation can be obtained. To clearly
resolve the bands, the separation between bands must
greatly exceed the width of each, which requires

∆Ut"
√

Dt→
(

U0Z

D

)1/2

" 1. (8)

Here we have assumed ∆U ≈ O (U0) and converted time
into downstream distance via Z = U0t. Another Péclet
number, Pe = U0Z/D, thus appears, which is called the
theoretical number of plates in the separation literature
(Giddings, 1991). Since U0 ∝ E in electrophoretic sepa-
rations, Eq. (8) indicates that strong electric fields and
long channels are best for separation.

We close our discussion of intermediate-Pe effects with
a final example for the separation of suspended parti-
cles by size (Austin et al., 2002; Cabodi et al., 2002;
Chou et al., 1999; Duke and Austin, 1998; Ertaş, 1998;
Huang et al., 2002a), related to theoretical ideas involv-
ing ‘ratchet’ potentials (Ajdari and Prost, 1992; Astu-
mian and Bier, 1994; Bier and Astumian, 1996; Mag-
nasco, 1993; Prost et al., 1994). Fig. 10 shows microfab-
ricated arrays of asymmetric obstacles, through which
particles are driven electrophoretically or with pressure-
driven flow. In the absence of diffusion (i.e. Pe " 1),
suspended particles follow field or flow lines. At moderate
Pe, however, a particle occasionally diffuses far enough to
cross over into a neighboring trajectory in a direction bi-
ased by the array’s broken symmetry (Duke and Austin,
1998; Ertaş, 1998). The hopping rate of each species in-
creases as its Pe decreases, so that smaller (higher-D,
lower-Pe) particles make lateral hops more frequently,
and thus separate by size. However, Austin et al. (2002)
and Huang et al. (2002a) argued that this simple pic-
ture was insufficient for separation, and one of two cri-
teria must be met: (i) field/flow lines must penetrate
the obstacles, or (ii) particles must be comparable in size
to the gaps between obstacles. The former allows for
separations even in the absence of diffusion (Pe → ∞)
(Huang et al., 2004). The latter has been achieved in
electrophoretic separations by using slightly conducting
posts (Huang et al., 2002a), and in ‘optical fractioniza-
tion’ wherein focused laser arrays impede particles but
not fluid flow (Gluckstad, 2004; Ladavac et al., 2004;
MacDonald et al., 2003).

3. Beating diffusion: when mixing matters

Thus far, we have concentrated on parallel laminar
streams, where interfaces between fluids of different con-
tent are largely parallel to the fluid velocity. This strat-
egy was chosen because the mixing of the two streams oc-
curs slowly enough to be monitored, manipulated, mea-
sured, or even ignored. As such, fluid motion plays a min-

FIG. 10 (Color in online edition) Sorting by diffusion. To
leading order, particles driven through the array follow
streamlines, and travel across streamlines through diffusion
alone. (a) When the array has a broken spatial symmetry,
the hopping rates are biased in one direction. Reprinted
with permission from Duke and Austin (1998). (b) Smaller
DNA fragments ‘hop’ more frequently and thus follow tra-
jectories that are more transversely-directed than larger par-
ticles. Reprinted with permission from Chou et al. (2000).
c©2000, John Wiley & Sons.

imal role in the evolution of the interface. The first hint
that we have seen of the role convection plays in interface
evolution appeared in Fig. 5, where the parabolic veloc-
ity profile modified the scaling of the interface spreading
from Pe1/2 to Pe1/3 near the T-junction.

In some applications involving inhomogeneous fluids,
however, the ‘side-by-side’ configuration of parallel lami-
nar streams is not possible. This occurs when molecules
or particles are separated by size, since separation ‘bands’
are typically oriented perpendicular to the flow/field di-
rection. In this case, convection invariably acts to fight
the ‘de-mixing’ separation process.

Other applications, however, require exactly the oppo-
site: a method to rapidly mix an inhomogeneous solution.
To probe reaction kinetics or protein folding, for exam-
ple, distinct fluids must be mixed rapidly enough that the
system is reaction-limited, rather than diffusion-limited.
Since mixing times (or distances) can be very long, strate-
gies are required to enhance mixing in microdevices. All
mixing – whether in turbulent or laminar flows – ulti-
mately occurs due to molecular diffusion. Fluid stirring
can be used to stretch and fold inhomogeneous fluid blobs
until mixing (diffusive migration across streamlines) oc-
curs (following the terminology of Aref and Balachandar
(1986) and Eckart (1948)). The basic idea behind mix-
ers is to use stirring motions to reduce the distance over
which mixing must occur.

A simple and elegant method for enhancing mixing
rates by reducing mixing distances involves flow focus-
ing (as in Fig. 14, but without capillary effects), in
which a central stream is narrowed to a width w using an
outer flow. In so doing, diffusive penetration of molecules
from the outer flow into the central stream occurs more
rapidly (τ ∼ w2/D) (Knight et al., 1998; Pabit and Ha-
gen, 2002). Such an approach has been used to study
protein folding on submillisecond time scales (Kauffmann
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FIG. 36 (Color in online edition) Mixing due to a high-Rae

electrohydrodynamic instability. When an electric field is ap-
plied along a channel containing solutions of different con-
ductivities flowing side by side, charge separation at the in-
terface introduces non-neutral fluid elements. When forcing is
strong enough that the interface can not relax by diffusion, the
non-neutral fluid elements are driven by the field and amplify
perturbations to cause instability. (a) shows an experimen-
tal time series, and (b) shows corresponding simulations (Lin
et al., 2004). Figure courtesy of J. Santiago.

(Chen et al., 2005; Lin et al., 2004), in the context of
related EHD instabilities in lower-conductivity solvents
(Baygents and Baldessari, 1998; Hoburg and Melcher,
1976, 1977; Melcher and Schwarz, 1968; Melcher and Tay-
lor, 1969; Saville, 1997). Controlling and avoiding this
EHD instability allowed Jung et al. (2003) to achieve a
thousand-fold amplication of solute concentration using
field-amplified sample stacking, an order of magnitude
greater than previous microfluidic devices (Jacobson and
Ramsey, 1995; Lichtenberg et al., 2001; Yang and Chien,
2001).

We note finally that electrical ‘Rayleigh’ systems are
richer in many ways than their buoyant counterparts.
While the electrical and buoyant systems described above
have certain similarities, important distinctions do ex-
ist. Significantly, the charged species themselves can
(and do) affect the external field strongly, whereas the
gravitational interaction between buoyant or dense so-
lute molecules is incredibly small. Although rich, such
systems remain largely unexplored.

F. The Knudsen number: when molecules matter

Throughout this review, we have always assumed that
the fluid can be treated as a continuum. As we ponder
and probe fluids on ever smaller length scales, a natural
question arises as to when the continuum approximation
loses its validity.

1. Molecular effects in gases

We have implicitly focused on liquids thus far, and have
not explicitly discussed microfluidic gas flows. Despite
their importance in numerous industrial and technolog-
ical applications, such flows seem to have been largely
overlooked by the physics community, owing perhaps to
the overwhelming importance of liquids in biology and
analytical chemistry. Various issues are introduced when
the working fluid is a gas rather than a liquid (Gad el
Hak, 1999; Ho and Tai, 1998), and here we focus on two
primary effects.

First, the molecular-level distinction between liquids
and gases can have important ramifications for microflu-
idic flows. While liquid molecules are in constant ‘col-
lision’, gas molecules move ballistically and collide only
rarely. Using the kinetic theory of gases, one can calcu-
late the mean free path between collisions to be

λf ∼
1

na2
, (35)

where n is the number density of molecules with radius a.
For example, an ideal gas at 1 atm and 25◦C has a mean
free path λf ∼ 70 nm, that increases at lower pressures
or higher temperatures.

As device dimensions get smaller, the mean free path
occupies an increasingly significant portion of the flow
– and thus plays an increasingly important role. The
Knudsen number,

Kn =
λf

L
(36)

expresses the ratio of the mean free path (the length scale
on which molecules matter) to a ‘macroscopic’ length
scale L. The latter is typically a length scale representa-
tive of the device, but could also be given by the length
scale for temperature, pressure or density gradients.

Non-continuum effects play an increasing role as Kn
increases. Roughly speaking, molecules located farther
than λf from a solid wall do not ‘see’ the wall, whereas
closer molecules can collide with the wall rather than
another molecules. This implies that the fluid behaves
like a continuum up to a distance λf from the wall, and
influences the boundary conditions obeyed by the fluid.
Maxwell (1879), at the suggestion of a referee, predicted
the no-slip boundary condition to be violated for ‘diffuse’
wall collisions, yielding instead the slip condition

u0 = β
du
dn

∣∣∣∣
0

, (37)

where β is a ‘slip length’ of order λf . This represents the
leading-order correction due to finite Kn; second-order
effects may play a role as Kn increases (Arkilic et al.,
2001; Maurer et al., 2003).

Second, the density of a gas typically depends much
more strongly on temperature and pressure than that
of a liquid. Therefore, compressibility can play a much
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2000; Hollingsworth and Saville, 2003). Thus, ICEK ap-
plications allow closely-spaced electrodes to be used, so
that higher fields can be established using low applied
voltages.

This picture allows an easier understanding of the first
work on microfluidic induced-charge electrokinetic phe-
nomena (Ajdari, 2000; Ramos et al., 1999). In these
systems, induced charge clouds form inhomogeneously
around the electrodes themselves, so that the electrode
screening time τel and the charge cloud formation time
τc coincide (Ajdari, 2000; Gonzalez et al., 2000; Ramos
et al., 1999). Transient fields drive transient charge
clouds to establish these flows, and thus are limited to fre-
quencies around ω ∼ τ−1

el . Three such systems have been
investigated: i) a pair of coplanar electrodes deposited
on a single channel wall as in Fig. 40 (Gonzalez et al.,
2000; Green et al., 2000a, 2002; Ramos et al., 1999); ii)
an asymmetric array of coplanar electrodes embedded in
a channel wall (Ajdari, 2000; Brown et al., 2001; Mpholo
et al., 2003; Ramos et al., 2003; Studer et al., 2002); and
iii) a dielectric ‘stripe’ deposited on an electrode (Nadal
et al., 2002b). The symmetric systems produce steady,
counter-rotating fluid rolls (Gonzalez et al., 2000; Green
et al., 2000a, 2002; Nadal et al., 2002b; Ramos et al.,
1999). Asymmetric electrodes pump fluid in the direction
of broken symmetry (Ajdari, 2000; Ramos et al., 2003), as
was verified experimentally (Brown et al., 2001; Mpholo
et al., 2003; Studer et al., 2002). A pump exploiting this
effect establishes flow velocities of 450 µm/s using 2V,
10kHz rms applied potentials (Mpholo et al., 2003).

ICEK phenomena are not limited to conducting sur-
faces, as induced charge clouds form around any polar-
izable (dielectric) surface, although they are strongest
around clean conducting surfaces (Squires and Bazant,
2004). Thamida and Chang (2002) observed a nonlinear
electrokinetic jet directed away from a corner that can
be understood with the above picture.

B. Acoustic streaming

Little explored thus far in microfluidics, acoustic
streaming represents one of very few inertial phenom-
ena that may actually play a significant role in microflu-
idic devices. As discussed in Section II.A, small feature
sizes typically prevent flow velocities from being high
enough to yield high numbers. High-frequency acous-
tic waves, however, can circumvent such difficulties. At
first, periodic wave motion might seem to be of little
use for fluid manipulation. However, the inertial non-
linearity can rectify oscillatory fluid motion to give a
time-averaged flow called steady or acoustic streaming,
as shown by Rayleigh (1884). A basic introduction is
given in §5.13 of Batchelor (2001), more comprehensive
treatments can be found in §8.4 of Lighthill (2001) and
Lighthill (1978), and detailed reviews are given by Ri-
ley (2001), Nyborg (1998), and Stuart (1963). Here, we
discuss three broad classes of steady streaming: quartz

FIG. 40 ‘AC electro-osmosis’ over coplanar electrodes. (a)
When co-planar electrodes are driven near a particular fre-
quency, an inhomogeneous charge cloud is induced over each
electrode, which both modifies the external field and is driven
by it. (b) The rectified, steady AC electro-osmotic flow, with
measured streaklines on the left and calculated streamlines on
the right. If the driving frequency is too small, charge clouds
fully screen each electrode, and no external field exists to drive
the flow. On the other hand, if the frequency is too fast, in-
duced charge clouds do not have time to form. Therefore, AC
electro-osmosis is strongest at a given (charging) frequency.
Adapted with permission from from Green et al. (2002).

wind, boundary-induced streaming, and cavitation mi-
crostreaming.

1. Quartz wind

The simplest manifestion of acoustic streaming is the
quartz wind, named for the ‘wind’ observed to blow
away from oscillating quartz crystals. Dissipation causes
acoustic waves to decay over an attenuation length
α−1(ω), resulting in an oscillatory velocity field u0 ∼
U0e−αzeiωtẑ with zero time average. However, the os-
cillation amplitude of a fluid particle decreases in one
half-cycle as it moves away from the source; conversely,
its amplitude increases as it moves toward the source.
Oscillating fluid particles thus constantly impart momen-
tum to the fluid, driving a secondary streaming flow away
from the acoustic source (Lighthill, 1978). This rectified
forcing comes from the nonlinear inertial term that we
have so far neglected. Time-averaging Eq. (1) yields a
steady body force

fQW = −ρ〈uω ·∇uω〉 ∼ ραU2
0 e−2αz ẑ, (50)
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Figure 1 (a,b) Simulation results of sessile droplets of volume V = 0.1–1.6 µm3 on a
rectangular microstripe of dimensions 1 µm × 8 µm. Exterior contact angle θext = 180◦;
interior contact angle (a) θint = 60◦ and (b) 30◦ (Darhuber et al. 2000a). (c) Ribbons of
water condensed from the vapor phase on hydrophilic microstripes about 50 µm in width.
Above a critical volume such that θB > 90◦, a bifurcation from uniform cross-section to a
single bulge occurs, unlike a Rayleigh instability. [Reprinted with permission from Gau et al.
(1999). Copyright AAAS.] (d,e) Top (contour) and side views of a liquid ribbon on a half loop
pattern measuring 10 µm in length with θint =45◦ and θext =135◦. Liquid accumulates near
the corners (Darhuber et al. 2000a). (f,g) Top and side views of a 10 µm wide liquid ribbon
on a rounded corner pattern with θint =0◦ and θext =180◦. When the inner radius of curvature
(indicated by the circle) is made to equal the microstripe width, bulges are eliminated for
moderate fill volumes, and the liquid height profile becomes uniform (Darhuber et al. 2000a).

For a prescribed set of interfacial energies, the pattern feature size, such as the
width w of the microstripes shown in Figure 1, can be used to control the liquid
shape for w # "c. As a consequence of the equilibrium condition of constant
mean curvature, the characteristic liquid thickness scales as h ∼ w2 because
∂2h/∂x2 + ∂2h/∂y2 ∼ h/w2 = const . The length scale w also determines the
lateral scale governing the drop-off in film height near boundaries or nonwetting
defects (Darhuber et al. 2001a). Incorporation of line tension or disjoining pressure
effects will introduce additional length scales, which can modify the equilibrium
conformations and stability limits on chemically decorated surfaces.

2.2. Droplet Shapes on Topologically Textured Surfaces

Textured surfaces can be categorized into those that have sharp corners and edges
and those whose slopes and curvatures vary smoothly with position. Concus &
Finn (1974) first studied the equilibrium shape of a finite volume of liquid inside
a wedge with opening angle β, where the contact angles on the two intersecting
half planes are θ1 and θ2. For the symmetric case θ1 = θ2 and small opening angle
β < π−2θ1, there is no stable equilibrium shape because the liquid is continuously
wicked along the wedge. Nonwetting liquids for which 2θ1 > π +β instead form a
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Microfluidics for Processing Surfaces and
Miniaturizing Biological Assays**

By Emmanuel Delamarche,* David Juncker,
and Heinz Schmid

1. Introduction to Microfluidic Systems

Microfluidics refers to the handling of liquids or gases at a
scale generally below 1 mm, where a number of phenomena
that are not present or not predominant at larger scales can
be exploited for numerous purposes.[1] The field of microflui-
dics is in essence multidisciplinary as it combines microfabri-
cation techniques with chemistry and biology.[2,3] Within mi-
crofluidics, the currencies are nanoliters for reaction
volumes,[4] micrometers for dimensions,[5] and milliseconds for
diffusion and reaction times.[6,7] The accurate sampling, posi-
tioning, and transport of nanoliter volumes of liquids using
microfluidics mirror the high dimensional control with which
microfluidic devices are made. In this review, we describe a
technology based on microfluidic networks (MFNs) and mi-
crofluidic probes (MFPs) that is useful to localize chemical
and biochemical reactions on a surface, where the possibility
of reversibly placing a microfluidic element in contact with or
close to a surface constitutes an essential feature for attaining
patterning resolutions on the submicrometer scale.[5,8]
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This review is an account of our efforts to develop a versatile and flexible
microfluidic technology for surface-processing applications and miniatur-
izing biological assays. The review is presented in the context of current
trends in microfluidic technology and addresses some of the major chal-
lenges for confining chemical and biochemical processes on surfaces: the
sealing of a microchannel with a surface, the world-to-chip interface, the displacement of liquids in
small conduits, the sequential delivery of multiple solutions, the accurate patterning of surfaces, the
coincident detection of various analytes, and the detection of analytes in a small and dilute sample.
Our solutions to these problems include the use of reversible sealing, capillary phenomena for
powering and controlling liquid transport, and non-contact microfluidics for spotting and drawing
(on surfaces) with flow conditions. These solutions offer many advantages over conventional tech-
niques for handling minute amounts of liquids and may find applications in lithography, biopat-
terning (e.g., the patterning of biomolecules), diagnostics, drug discovery, and also cellular assays.
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... is not just the study of viscous flows: 
there is a lot of additional physics

Surface effects and wetting
Interface deformations and two-phase flow
Advective transport vs. diffusion
Slip and non-continuum effects 
Elastic and non-Newtonian forces
Electrokinetics and electrical forces
Intermolecular forces
Heat transfer
Porous material
Acoustic streaming and sound waves
Suspensions
Living cells
Chemical reactions
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6.1. Microfluidic Probes for the Hydrodynamic Confinement
of Liquids

Figures 11A,B show the flow profile of a solution that is
being injected from one aperture of the mesa into a gap con-
taining a surrounding liquid, and aspirated together with some
of the surrounding liquid by a second aperture of the mesa. If
the injection flow rate (QI) is significantly lower than the as-
piration flow rate (QA), the injected solution is deflected, con-
fined and focused by the concentric flow field into a microjet,

and then directed into the aspiration aperture, as shown here.
We define the confinement of a processing solution by a sur-
rounding liquid in a geometrically open space as hydrody-
namic flow confinement (HFC). HFC bears similarities to hy-
drodynamic focusing,[7] because a first fluid is being enclosed
and focused by a second one, but is different in that there are
no physical sidewalls. Therefore, if the ratio QA/QI falls below
a critical value, defined as the confinement limit, the confine-
ment is lost, and the injected fluid leaks into the surrounding
medium. The hydrodynamic focusing strength can be adjusted
by the ratio QA/QI, and, importantly, for small gaps, the mi-
crojet can be forced to impinge on the surface. The variation
of QA and QI, in conjunction with the gap size, can be used to
fine-tune the shape and size of the impingement area on the
surface, thus, enabling a processing solution to flush the sur-
face and either deposit or remove material locally. The fluo-
rescence microscopy image in Figure 11C shows a liquid col-
ored with fluorescein and containing red fluorescent beads
flowing from one aperture to another during 8 s. The flow ve-
locity is slower at the periphery of the flow field, which trans-
lates into red lines of increased intensity at the periphery.

6.2. Processing Surfaces with Microjets Using a Microfluidic
Probe

HFC combined with the capability to scan the MFP across a
surface permits the writing of arbitrary patterns on surfaces
using a continuous delivery of reagents. When the substrate is
scanned relative to the MFP, a laminar drag, a so-called Cou-
ette flow, develops between the mesa of the MFP and the sur-
face and is superposed to the concentric flow field. Controlled
use of this effect allows the processing of isolated areas of a
surface with a simple stop-and-go movement without having
to interrupt the flow of the processing solution or retract the
MFP from the surface. Indeed, when the substrate is moved in
the direction of the microjet flow, the microjet is being vis-
cously dragged towards the aspiration aperture, and a surface
boundary layer of immersion liquid “isolates” the surface
from the microjet during the brief passage under the mesa. A
high-density array of antibodies was formed on a glass by tak-
ing advantage of these hydrodynamic phenomena (Fig. 12A).
When the substrate is moved against the direction of the mi-
crojet, the Couette flow opposes the flow direction of the mi-
crojet. Moderate velocities slightly enlarge the confinement
envelope of the jet, and molecules will be deposited as a line,
which occurs here on the first two spots of each vertical line.
The two types of antibody of the array were patterned in less
than 15 min each, using ∼300 nL of solution, and have a sur-
face density of > 15 000 spots cm–2. A 2–5 lm gap between
MFP and surface, to ensure high mass transport and rapid ad-
sorption of the proteins to the surface, resulted in a spot being
formed in 0.3 s by using only 130 pL of protein solution. Com-
pared with conventional spotting,[315] sample consumption
here is as low as in those techniques, whereas spot uniformity
and density are superior.
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Figure 11. MFP used for the HFC of a liquid over a surface. A) Cross-sec-
tional and B) bottom views of an MFP in an immersion liquid and over a
substrate. The immersion liquid is aspirated into an aperture at a flow
rate QA (blue area, blue flow lines) and exerts a hydrodynamic pressure
on a stream injected through a second aperture at a rate QI (< QA). The
stream is deflected, confined and focused into a microjet (green area,
red flow lines), and guided into the aspiration aperture. C) Fluorescence
microscopy image, recorded during 8 s, that shows the flow path of a liq-
uid between the apertures of an MFP and over a glass substrate. The
aqueous microjet contained fluorescein (green) and 2.5 lm wide fluores-
cent beads (red) that reveal the shape and flow lines, respectively,
whereas the immersion solution (water) appears black. Here, the gap
was 10 lm, QI = 0.44 nL s–1, and the ratio QA/QI = 2.5 resulted in a rela-
tively wide microjet. (Reproduced with permission from [124].)
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by fluctuations either across shear-rate gradients or ten-
sion gradients in the base state. This couples the ‘hoop
stress’ σθθ acting along the curved streamline to the ra-
dial and axial flows, which can amplify the perturba-
tion. Such elastic instabilities in a saturated nonlinear
state give rise to irregular fluctuations and ‘elastic tur-
bulence’ (Groisman and Steinberg, 2000, 2004; Larson,
2000), which has been exploited to enhance microfluidic
mixing (Groisman and Steinberg, 2001).

Only recently have such elastic nonlinearities been ex-
ploited in microfluidic flows. Efforts in decades past to
design and construct nonlinear fluidic ‘logic’ elements re-
sulted in such common items as pulsating shower heads,
windshield wipers, and sprinkler systems (Foster and
Parker, 1970; Humphrey and Tarumoto, 1965; Joyce,
1983). Attempts to build miniaturized fluidic comput-
ers, however, foundered, since inertial nonlinearities van-
ish as devices were scaled down and Re→ 0. Elastic in-
stabilities occur at vanishingly small Reynolds number,
and can re-introduce flow nonlinearities in microfluidic
devices. With microfluidic ‘computing’ in mind, several
nonlinear microfluidic flow elements have been designed
that exploit elastic nonlinearities: a nonlinear fluid resis-
tor (Fig. 27), a bistable ‘flip-flop’ memory element (Fig.
28) and a flow rectifier (Fig. 29) (Groisman et al., 2003;
Groisman and Quake, 2004).

We consider first the nonlinear flow resistor (Fig. 27).
Newtonian low-Re flows vary linearly with pressure, re-
gardless of channel geometry. By contrast, dilute poly-
mer solutions behave linearly only for small applied pres-
sures, for which Wi " 1 and polymers deform only
slightly. Above a threshold pressure, however, the non-
linear flow resistor passes a nearly constant flow of elas-
tic fluid over nearly a decade increase in applied pres-
sure. This ‘constant flow’ regime occurs once Wi > 1,
which can be understood qualitatively from energy argu-
ments. Under such strong flows, additional power input
that would normally increase the flow rate is instead con-
sumed by further deformation of the polymers (Groisman
et al., 2003). This deformation is stored entropically but
is not returned to the flow due to the hysteretic differ-
ences between coil stretching and relaxation.

The fluidic ‘flip-flop’ memory element is bistable, with
oppositely-directed fluids into a four-channel junction
(Fig. 28). Macroscopic flows through a related crossed
geometry were studied by Cochrane et al. (1981), al-
beit without mention of bistability or applications. If
the fluids were Newtonian, each stream would simply
split and flow evenly into both outlet channels. Non-
Newtonian fluid streams, on the other hand, break sym-
metry and ‘choose’ one of the two. The junction ‘remem-
bers’ this state due to the stability of the flow, but can
be switched using a transient pressure shock (Groisman
et al., 2003). This effect is likely related to the ‘tubeless
siphon’ phenomenon exhibited by polymeric fluids (Bird
et al., 1987a), in which polymers stretched and aligned
with the flow exert an elastic stress that tends to pull
neighboring molecules in the flow direction.

FIG. 27 Nonlinear viscoelastic flow resistor. While a low-
Re Newtonian fluid would exhibit a linear pressure/flow rela-
tionship, elastic stresses in dilute polymer solutions introduce
significant nonlinearities, even at very small Re. (a) Elas-
tic nonlinearities cause an increasingly complex flow as pres-
sure increases. A vortex forms on the upstream side of the
contraction between applied pressures 24 and 36 Pa, which
corresponds to the ‘elbow’ in the flow rate vs. pressure plot
(b). The contraction vortex extends upstream and increases
in size as pressure increases. (b) The flux vs. pressure pro-
file is linear for low applied pressures, but flattens for applied
pressures above a critical value (where Wi > 1), creating an
approximately constant current source. Reprinted with per-
mission from Groisman et al. (2003). c©2003 AAAS.
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FIG. 28 Nonlinear viscoelastic ‘flip-flop’ memory device. Di-
lute polymer solutions (one dark, one light) that enter a junc-
tion from opposite sides ‘choose’ an exit channel, contrast-
ing with Newtonian fluids that split to flow through both.
The fluids flow stably through the exit they have chosen,
but switch when a transient (50 ms) pressure pulse is ap-
plied. Reprinted with permission from Groisman et al. (2003).
c©2003 AAAS.
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required to introduce fluid varies (66). The development of microfluidics on a CD

format uses changing resistances and changing pressures (via centrifugal force) to

program fluid flow (67, 68).

4.1.2. MIXERS Mixing is a basic process required formany biological applications.

At the microscale, laminar flow conditions prevent mixing except by diffusion.

However, diffusion does not happen fast enough to provide an adequate means

of mixing in some microfluidic-based assays, particularly those that require rela-

tively large particles (i.e., cells) to mix. In a microfluidic device, there are two

ways of mixing fluid streams. Passive mixers use channel geometry to fold fluid

streams to increase the area over which diffusion occurs. Examples of passive

mixing include a distributive mixer (69–71), a static mixer (72, 73), a T-type mixer

(74), and a vortex mixer (75). The Coanda effect is used to make an in-plane

micromixer that splits the fluid streams and recombines them to induce mixing

(76) (Figures 8a and 8b). A design for passively inducing chaotic advection in a

Figure 8 Two examples of passive micromixers. (a) A schematic of a mixer using the

Coanda effect,which splits thefluid streams and then recombines them, and (b) a picture

of the Coanda effect mixer. (c) A schematic of a 3-D serpentine micromixer, which in-

duces chaotic advection, and (d ) a devicewhich shows a serpentine channel formixing.

From Ref. (76) reprinted with permission from Kluwer Academic Publishers c© 2001.
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FIG. 14 Capillary instabilities in a microfluidic two-phase
flow. A stream of water flows between streams of oil and
is geometrically ‘focused’ into a narrow cylindrical jet. The
jet is destabilized by the Rayleigh-Plateau instability and
forms small, monodisperse droplets. Reprinted with permis-
sion from Anna et al. (2003). c©2003 AIP.

In principle, any technique for manipulating fluid flow
can be used to promote rapid mixing. Examples in-
clude electrowetting (Paik et al., 2003) nonlinear elec-
trokinetic effects (Bazant and Squires, 2004; Takhistov
et al., 2003), electro-osmosis in inhomogeneously charged
channels (Qian and Bau, 2002), acoustic streaming (Yang
et al., 2000, 2001), and others.

Lastly, a few microfluidic mixers have been developed
by direct analogy with turbulence. Rather than employ a
deterministic but chaotic flow, these micromixers desta-
bilize the flow using non-inertial means. Electrohydro-
dynamic instabilities (El Moctar et al., 2003; Lin et al.,
2004; Oddy et al., 2001) (Fig. 36) and elastic instabili-
ties of dilute polymer solutions (Groisman and Steinberg,
2001, 2004) have proven effective.

C. The capillary number: free-surface deformations

Thus far, we have assumed that fluids are miscible:
parallel streams were assumed to flow alongside each
other, and tracers diffused freely from one stream to
the other. Between immiscible fluids, however, a sur-
face tension γ affects the dynamics of the free surface.
For example, Fig. 14 (Anna et al., 2003) shows a
thin central stream of water breaking into drops due to
the Rayleigh-Plateau instability (Chandrasekhar, 1981;
Rayleigh, 1879). Clearly, surface tension can play an im-
portant role in microfluidic flows when immiscible free
surfaces are present.

1. Droplet formation in two-phase flows

Thorsen et al. (2001) demonstrated that microfluidic
devices could be used to create controllable droplet emul-
sions in immiscible fluids, by injecting water into a stream
of oil at a T-junction (Fig. 15). Were there no interfacial
tension between water and oil, the two streams would

!"#$%
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FIG. 15 Monodisperse micro-droplet generation in a simple
microfluidic device. The interface between flowing immiscible
fluids is driven by competing stresses: viscous shear stresses
tend to extend and drag the interface, whereas surface tension
tends to reduce the interfacial area. The competition between
the two leads to drop sizes (scaled by the channel height h)
of order R ∼ Ca−1. Adapted with permission from Thorsen
et al. (2001).

flow alongside one other, as in the T-sensors. However,
competing stresses drive the interface: surface tension
acts to reduce the interfacial area, and viscous stresses
act to extend and drag the interface downstream. These
stresses destabilize the interface and cause droplets of ra-
dius R to form (Rallison, 1984; Stone, 1994). An estimate
for the size of the droplets can be obtained by balancing
the two stresses on the interface (Taylor, 1934). Capil-
lary stresses of magnitude γ/R balance viscous stresses
ηU0/h, giving a characteristic droplet size

R ∼ γ

ηU0
h =

h

Ca
. (15)

Here we have introduced the Capillary number,

Ca =
ηU0

γ
, (16)

a dimensionless parameter found whenever interfacial
stresses compete with viscous stresses.

An advantage to this strategy is that one can pro-
duce monodisperse droplets, owing to the deterministic
nature of microfluidic flows. Further work on droplet-
forming devices includes studies of the rich variety of
droplet patterns that forms in channels (Dreyfus et al.,
2003; Thorsen et al., 2001), and studies of ‘microchan-
nel emulsification’ (Sugiura et al., 2001, 2002a,b, 2000).
Significantly smaller droplets can be formed using flow-
focusing, either by increasing shear gradients or by draw-
ing the stream into a thin ‘jet’ that breaks up by the
Rayleigh-Plateau instability (Fig. 14) (Anna et al.,
2003). Notably, the dynamics of flow-focusing bubble-
forming systems is largely independent of Ca for both
low-Re (Garstecki et al., 2004) and high-Re (Ganan-
Calvo, 1998; Ganan-Calvo and Gordillo, 2001; Gordillo
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pellets were resuspended in 1! F-buffer. Both supernatants and
pellets were run on a SDS!polyacrylamide gel (3% stacking and
12% resolving), and the gel was stained with 0.2% Coomassie
brilliant blue R-250 to visualize the protein bands in the gel.
Bundling assay. The assay for bundling was virtually identical to the
binding assay, except that low speed sedimentation was used.
Typically, bundles sediment at 10,000 ! g in 15 min, but because
almost no F-actin sediment at this speed, it is important to
include a control sample of F-actin only. After a 1-hr incubation
at room temperature, 50 !l of actin–scruin mixture was spun at
12,000 ! g for 15 min with a table-top centrifuge (Model 3200,
Eppendorf). The supernatant is carefully pipetted out of the tube
and any remaining supernatant was removed by inverting the
tube and letting the liquid drain. The pellet was the resuspended
in F-buffer. Both supernatants and resuspended pellets were
analyzed by SDS!PAGE.

Results
In this study, we made direct measurements of the network
microstructure with confocal microscopy, EM, and MPT. To
characterize the structure, we determined that the distribution of
pore sizes and bundle thicknesses as the ratio of scruin to actin
concentration, R " cS!cA, is varied. Cosedimentation assays at
both high and low speed were performed to confirm that the
addition of scruin had no effect on the actin filament density but
only enhanced the bundling of filaments. We measured the
network elasticity with MPT and bulk rheology. We compared
our results to the predictions of a model of entropic elasticity for
semiflexible polymer networks, and we showed that the bulk
properties of the network were directly related to the properties
of individual bundles and filaments at the length of the mesh size.

Evolution of Pore Structure. Confocal fluorescence microscopy with
the labeled actin indicates that when scruin is added, actin filaments
form bundles whose thickness increases with increasing concentra-
tion of scruin as shown in Fig. 1A; simultaneously, the pore size of

the network becomes larger. The high-speed cosedimentation assay
results confirm that the majority of actin was polymerized and that
the degree of actin polymerization was independent of the presence
of scruin, and the actin filament density in the network remained
constant, regardless of the amount of scruin in the sample (Fig. 1C).
This observation is in contrast with other ABPs, such as profilin,
which control actin assembly by altering the concentration of
G-actin at which polymerization to F-actin is initiated (30, 31).
Moreover, all of the scruin cosedimented with F-actin, suggesting
that scruin has a high affinity for filamentous actin. The low-speed
cosedimentation assay results characterize the amount of scruin in
the pelleted bundle and indicate that more filaments form bundles
as the concentration of scruin is increased (Fig. 1C). However, this
assay is not able to differentiate between the effects of bundle
thickening and the increase in number of bundles. Instead, we used
confocal imaging to show that the number of single filaments
decreases, whereas the bundles thicken with increasing scruin
concentration. At a low concentration of scruin (low R), it is more
probable to form random crossover points between two filaments,
leading to small loose bundles with irregularity in their structure as
evidenced in EM images. As R is increased, more tightly bound
individual bundles become visible in an otherwise largely homo-
geneous network of actin filaments; beyond a critical R, the bundles
themselves become cross-linked by means of a variety of scruin–
scruin interactions. The bundle thickness, DB, at various R is
visualized by transmission EM of negatively stained bundles of actin
(Fig. 2A), and we find DB!D0 # Rx, where x " 0.3 (Fig. 3A) and D0
is the diameter of a single actin filament.

We quantified the pore size distribution by using both MPT
and confocal microscopy. MPT is conventionally used to quan-
tify the local elasticity, viscosity, and diffusivity of soft materials,
such as gels and entangled solutions (25). This technique also
offers a method to characterize the organization of polymers in
solution. The distribution of particle MSD was mapped onto a
2D plane to study the degree of heterogeneity, and the magni-
tudes of the MSDs were used to determine the pore size

Fig. 1. Changes in the degree of bundling at various R values. (A) Confocal images of an F-actin:scruin network at various R values. The rightmost image is an
assembled 3D projection of 50 images with 100-nm intervals. (Scale bar, 10 !m.) (B) Three-dimensional deconvolved image of a 1:2 (scruin:actin) network. Each
grid measures 1 !m. (C) Scanned image of a SDS!polyacrylamide gel. The sample numbers, 1, 2, 3, 4, and 5, correspond to R " 0, 0.07, 0.2, 0.5, and 1, respectively,
at a fixed cA " 11.9 !M. S, supernatant after centrifugation; P, pellet after centrifugation. High-speed cosedimentation assay data shows that the F-actin density
is unaffected by the presence of scruin and that all of scruin binds to F-actin. Low-speed assay data shows the degree of bundling; although all scruin binds to
F-actin, not all of the scruin-decorated F-actins assemble into thick bundles. CaM, calmodulin.
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