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MECHANISM I

Shallow layer: upswimming of cells that

are slightly denser than water generates
an unstable density stratification which

leads to overturning (cf. Rayleigh — Bénard)
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MECHANISM II

Certain algae (at least) swim upwards because
they are

s
4

GRAV. TORQUE

p  S——_
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MECHANISM I

CONSEQUENCE

When placed in a vertical shear flow
the balance between viscous
and gravitational torques means

that such cells will swim

(on average)at an angle VISCOUS TORQUE
- m
to the vertical

(in pipe flow) f

It follows that a uniform

suspension is unstable, ~— ¥
which leads to GRAV. TORQUE
bottom standing plumes
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Suppose a natural fluctuation causes
a blob of fluid to have a larger

than its surroundings
This blob, being denser,will fall,
generating a velocity profile with shear

Gyrotaxis will then cause more cells
to be focussed into the wake of the blob

Gyrotactic Instability
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CONTINUUM MODEL
for the suspension as a whole

Assumes every volume element, small compared with
the scale of the flow, contains very many cells.

Thus variables can be represented by their averages
over the volume element.

Averaging not necessarily easy because cells swim in
random directions.
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Particle Tracking (projection)

Vertical velocity, micron/s

Horizontal velocity, micron/s

The result of measuring the velocities. Each cross corresponds to velocity
detected. Number of tracks analysed is 359, number of points displayed is
2168. Dense cloud below the origin corresponds to sedimenting particles.

Vladimirov, V.A. et al (2000) Marine & Freshwater Res. 51: 589-600.
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Cell Conservation

Dn
—=-V-(nV,+J,)
Dt

[+ birth, death, etc]

where

I/c = mean cell swimming velocity,

J . = flux due to random cell swimming (chemokinesis) [= —D-Vn 7]

Both consequences of cell swimming, directed and random respectively

<>
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Cell Conservation Equation

n

N__y. [n(u+V,)-D-Vn|

ot el . -
Swimming diffusion

The random swimming behaviour can be quantified in terms of a

probability density function f(p) for the cell swimming direction p
[and, in principle, another one for swimming speed V ]. Then
ensemble averages are defined by

=[ [--f(p)dp

where the integral is taken over the unit sphere in p -space.

Thus V. =(V.p)=V,(p)
But whatis f(p)?

And how do we calculate D ?
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Rational model (?)

P&K (JFM, 212, 155-182, 1990)

Intrinsic randomizing influences are balanced by
the tendency to returnto p: f(p) satisfies a
Fokker-Planck equation:

of .
(E+)Vp (pf)=D, Vi f
(probability conservation in p— space)

(treats the suspension as analogous to a colloidal
suspension subject to Brownian rotation)
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Bottom heavy algae will rotate as a result of the torque balance

But note that sedimenting cells
l with uniform density but asymmetric
shape will also rotate

ST e (e.g. spermatozoa)

N\

&
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Torque balance for algae

D+ [(U+Vv).V]p =5k (k.p)p] +%Mp

+a,Pp.E.(I1-pp) —2Dp

where u = fluid velocity
v = sedimentation velocity
w = vorticity
E = strain-rate
Dp = rotational diffusivity
as, = 0 for spheres, 1 for rods
| = 6 for spheres
' x| HE

3 is the angular velocity the cell would have if released from
horizontal.
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GRAVITAXIS IN A STILL FLUID

Solving the Fokker-Planck equation gives

f(p) = pe P

where
\=1/BD,
and g is determined from [ f(p)d*p =1

(Fisher distribution)

Compare with experiment
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Bioconvection
Governing Equations (Dilute Suspension)

Navier-Stokes (Boussinesq)

Du

= _VP-—npgk+V-¥; V.u=0
th npgk + Z u

Where u = bulk velocity, P = excess pressure, Y =

deviatoric stress tensor, —g"ﬁ: = reduced gravity, n = num-
ber density of cells.

Stress includes Newtonian term plus term from intrinsic
stresslets of the swimmers.
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¥ 3
A %, ¥
{
4
X
-
Algal cell
“Puller” Sperm Bacterium
S=+T/( “Pushers”
S=-T/

Contribution to bulk stress tensor : ¥ = nS(pp —% I)

[Note that pushers tend to be head-heavy, not bottom-heavy]
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INSTABILITY OF A UNIFORM SUSPENSION

Assume dilute, spherical cells, isotropic cell diffusivity D.
Basic state: n=ng, Uu=0, p=k, YP = -n.;;,S(E:E —% I

Linearised perturbation equations (primes for n,p pertur-
bations):

(1) Vu=0

(2) dpu = —LvP—n'gh+1V2u+g 7/ (kk — 31) + no(kp' + p'k)|

(3) On! = —V. [ng(u +Vop') 4+ n'Vok — D?n’}

(4) op' + Vo (k. V)P = —3p' + Jw Ak -2Dg 'p/

(w = vorticity)
7 equations for 7 unknowns : u,v,w, P,n',p7, p5.



Uniform basic state means constant coefficients.
Set unknowns proportional to

exp (ot +ir.X), v = (k,I,m).
Two types of mode can be found:

(i) Twist Take curl of (2) and (4) and get, in
dimensionless form,

(0 + B+ 2D +ixp) (o + £°7) + Sk2p® =0

where p = m/k = cosé, length-scale is D/V,, time-scale is J’_’)/‘L{;’2

=_8D —_ v 5. _DpD T_ ngS
and f=yz, =1 DR=77 S=gy7,
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(ii) Splay Take div of (2) and (4):

(0 + B+ 2Dg + ikp) (0 + k% +irp)(o + 7r?)

—(0 + K%+ irp) K25 (1 — 2u2) — (G — iSkp) K2(1 —p?) =0

nogl?

where § = =24
2V
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Ql (nl ™|

<|

PARAMETER VALUES

C nivalis

0.2
1.4
11

250

Note:

Also

Hence

B subtilis B subtilis
(upswimming)  (sedimenting)
5x10° 2 14x10 >
-3400 -3400
20 -37
2750 2750
v >>1
Dp= DgD = 1/6
Ve

B+ 2_DR>O In all cases

Spermatozoa
(sedimenting)

-0.02

5
-1.2x 10 Ny
6.9x10™"n,

1200
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7> 1 = () o~ —(B+2Dg+ 242 + inp)

k= 0(1)

STABLE for 3 >0, S >0, i.e. for C.nivalis

(so not important that this mode was ignored by Pedley,
Hill and Kessler (1988): PHK)

but UNSTABLE if 34+ 2Dp < 0 or S is sufficiently negative
(pushers like B.subtilis)

i.e. E{ —

I+

L =t

That instability was first noted by Simha & Ramaswamy
(2002): SR
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(ii) ¥ > 1 gives a quadratic equation for o.
_ — E
(0 + K%+ irp) [cr +B+2Dp+irp—— (1~ 2/17)

-

- (g—fgw) (1—p?) =0

L Iy

Consider sm)all x (but not so small that Tx? is not much
larger than o):

o240 [F—i(l — 2;3)} ~da- =0
L’ L’

where 3 =5 + 2Dp
(a) S = 0 (no particle stress)

— -, ~
Then 2 o = -3+ x/;ﬁ' -I-%_;q(l — u?)

One root is positive if § > 0 ;
this is the gyrotactic instability found by PHK
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(b) S£ 0.5 = 0 (no buoyancy)

Then o = —ﬁ-l— I;Ej(l — 212

which is negative (stability) for all pu if ﬁ > g SO gyrotaxis

wins over particle stresses (e.g. C.nivalis). However, if
? < 0, then there exist values of u for which o < 0 what-
ever the sign of 'S. This follows from the factor (1 — 2u2)
and was the main result of SR.

In general, if 0 < ? < ﬂ? then instablity will be found.

v

[Note: if 3 = 0, there needs to be some other reason for
cells to swim in the same direction in the basic state].
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But, if we do not ignore the :x pu term the equation for o
becomes

—

a2+a{§—§(1—2£)]—

N =)

(1 — paz) + 1Sk (1 — ,uz) =0

L!

The last, imaginary, term means that there is a (weak)
instability whatever the sign of the coefficient of o.

More detailed analysis shows that the unstable mode is
rather different for pullers and pushers, the former giving
greater growth rate.

This new instability arises from the fact that the particle
stress is non-zZero in the basic state.
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Predictions for downswimming bacteria or spermatozoa

A uniform suspension will be unstable if

>B and p?>1/2

= |

which requires a sufficiently large cell concentration.

For B subtilis this would be about
10° cells per ml
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Collective behaviour:

Bioconvection - bottom-heavy algae
(Chlamydomonas nivalis)

Bioconvection - oxytactic bacteria
(Bacillus subitilis)

“Whirls and jets” - bacteria, in 3D or 2D configurations

(Ray Goldstein’s movie)
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Question - can the observed behaviour of the bacteria
be explained in terms of hydrodynamic
Interactions alone, not chemical or other
‘'sensory’ signals?
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Recent modelling of collective behaviour of small swimmers:

J-P Hernandez-Ortiz, C G Stoltz & M D Graham
Transport and collective dynamics in suspensions of confined
swimming particles (PRL 95, 204501, 2005)

* D Saintillan & M Shelley
Orientational order and instabilities in suspensions of self-locomoting
rods (PRL 99, 058102, 2007)

T Ishikawa, M P Simmonds & T J Pedley
Hydrodynamic interaction of two swimming model micro-organisms
(J Fluid Mech, 568:119-160, 2006)

T Ishikawa & T J Pedley
- The rheology of a semi-dilute suspension of swimming model
micro-organisms (J Fluid Mech, 2007)

- Diffusion of swimming model micro-organisms in a dilute suspension

(J Fluid Mech, 2007)
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Saintillan & Shelley

Model the organism as a long prolate spheroid, with a given
tangential shear stress over part of the surface, the rear for a
pusher, the front for a puller. An “elongated squirmer”.

— P

They use resistive force theory, which ignores near-field
hydrodynamic interactions, and simulate a 3D (fairly shallow)
suspension with periodic boundary condiditons. (They state
that putting in the near-field interactions makes little difference.)

Also, pushers tend to align with neighbours; pullers don't.
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FIG. 1. Orientational instability in a polar nematic suspension
of pushers, at an effective volume fraction of n(L /2)3 = 1.0. The
figure shows a region of dimensions 10 X 10 X 3 (in units of
particle length) containing 2500 particles at different stages of

the instability (a)—(d).
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29 June 2004

Fluid dynamical interaction of two
swimming model micro-organisms

T. Ishikawa™ and T. J. Pedley™

“1 Tohoku University, Sendai, Japan
“2 University of Cambridge, UK
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2. Modelling a micro-organism

Envelope model Ciliate |l o

The model micro-organism will be assumed to propel
Itself by generating tangential velocities on its surface.

squirmer 3

by J.R.Blake (1971)

u’l = %Vl (cos @) + B,V, (cos )

P
a micro-organism is modeled ,, _ 2sind P’
as a rigid sphere with " on(n+1) "

squirming surface velocity P. : Legendre polynominal of order n

B, : coefficient of mode n
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(b) B=5
Figure 1. Velocity vectors relative to the translational velocity vector of a squirmer. Uniform flow of speed 1.0, in dimension-
free form, coming from far right. The scales of vectors in (a) and (b) are the same.
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PIV for
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t=7.0

Interaction between two squirmers (Simulation)
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Casel:. ) — = O=m

<

Two squirmers are
facing each other.

w Sample movie with )

dl, =1and #=5. dli=1,2,3,5,10,
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Case2: 6 — /2

% 6= /2
10

&
<

Two squirmers are
crossing in a right angle.

10

w Sample movie with ‘
=-1land g=5.

%, Sample movie with
=-5and /=5. alyfini=

=-1,-2,-3,-5,-10
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Numerical Results : Effect of 3D orientation

When 6, = n/4 and =5, there Is a stable
condition 1f we restrict their motion in 2D.

& sample movie with dl, = -

6=nl4
24.14

10

In case with a gap In
zZ direction, there iIs
no stable condition.

Sample mowe 6,=0
& with dl, =
anddl| = o1 - . @’?
z Lo dlyfii= -
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1 Compute the motion of many
Interacting squirmers, using the
database of pairwise interactions

2 Use full Stokesian Dynamics
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Simulation shows aggregation in 2D, not in 3D

3D-c01
2D-c05 3D-c04
Bottom-heavy
2D-bh-c01 3D-bh-c01

2D-bh-c05
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2D — aggregation or alignment
3D - diffusive spreading?

- some aggregation as well
(see paper by J T Locsel)?
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Diffusion tensor, D

_ v g e t) = r(t) It + 1) = r(t))
D' = ! V(O -t))dt'=lim >

NLM \ [ri(t+tk)_ri(tk)][ri(t+tk)_ri(tk)]

" MN ;Z;‘ ot

R PINT <[w(t"‘to)_w(to)][w(t+to)_w(to)]>
DR = ! (@M e(-t))dt'=lim 2t

w:jgm

In case of non-BH squirmers, their orientation is isotropic.
Therefore, the diffusion tensor is also isotropic. Hence we
discuss only the following quantities:

T T T R R R
_Dm+DW+DH DR_DXX+DW+DZZ

3 3

DT

<>
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Diffusion tensor, D

10*
— translational
----- rotational
+— ol =~ y=ax
S 10
O
=
o 1
o 10
[
e
g 2 ///--/
= -4
£ 107
1073 '
10% 10*
time interval
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SCALING
A squirmer’s velocity changes in direction, not (much) in
magnitude, due to interactions with others.

In a semi-dilute suspension such interactions can be considered
as pairwise collisions, interspersed with more-or-less straight runs.

Hence model the system as molecules in a gas (kinetic theory):
a random walk of runs separated by near collisions.
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Speed of squirmer ~ U (constant)

Distance travelled between collisions ~ mep

Time between collisions ~ t . = L /U
mfp

Volume swept out in thistime V ==« aZUtmfIO

This will contain one other squirmer if
volume fraction ¢ = 4r a’/3V

L.e. p = 4al(3Uc) = 4/(3c) indimensionless terms

tm
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But the time required for a significant change of orientation
Will be the effective duration of a collision, independent of
the number of collisions.
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10°

— =
A .
— 107
o p=5
L c=0.1
_ ----¢=0.075
i —-—¢=0.05
—-—c¢=0.025
1072 | | |
102 10? 10° 10*
(a) translational diffusivity replotted against At /At
10°
. L
. L
D -
m\
D - .
’ J / =5
// s ﬂ c=0.1
Py -—-—czg.ggs
-1 VAR ----¢=0.
107" e —-+—¢=0.025
L/ '/ | |
1072 10t 10° 10!
At] Aty

(b) rotational diffusivity replotted against At / At .,

Figure 9. The results of figure 6 are replotted by using different characteristic time At.¢, and At .. The vertical

axis is normalized by D;. Copyright T. Pedley, 2007



10°
o = B
[|)]
n:\ B
[a) /
“
. =5
10 ~# ﬂ—c:O.l
7/ -—-—¢=0.075
, ----¢=0.05
4 —-—¢=0.025
1 1 1 I 1 11 II 1 1 1 I 1 11 1 I
10t 10° 10?

At

(c) rotational diffusivity replotted against normal At

Figure 9. The results of figure 6 are replotted by using different characteristic time At_;. The vertical axis is
normalized by D;.
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Magnitudes?

Random walk model:

DTinf =U mep/3 ~ 10 /13 = 4/(9¢c)
2
DRinf = SAO> t_rrlmfp ~C
6tmfp
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. ----y=0.24/x
1 Y
10" -
-
I—D_ B ..
I e
o
100 ! ! ! | ! ! ! ! |
102 101
C
(a) translational diffusivity
10 -
— ﬂ :5 ‘/
[1----y=0.85x o
.
/’//
£ B
. -
) - 7
— /.//
10'2 -7 ! ! ! | ! ! ! ! |
1072 10t
C

(b) rotational diffusivity

Figure 10. Correlation between D;; and ¢ (#=15). D, is the converged diffusivity after a sufficiently long time.
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Bottom-heavy squirmers ?
They all have a preferred swimming direction — upwards

Mean free path not significant — squirmer interaction
dominated by configuration of surrounding squirmers, which
changes on a length scale proportional to the particle
spacing:

L = fAma’\*
= (5 )

1/3

t ~ (4n/3c)

mps
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100 th:lo,égf5
H c=0. oo
H ----¢=0.075 =
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(a) translational diffusivity DT,
10° -
o > r
@ i
\>~.
o > o
&) G,,=10, f=5
c=0.1
107 ----¢=0.075
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- y —-—¢=0.025
Iil IIIIIII 1 1 IIIIIII 1 1 I
1072 10t 10° 10t

At ] At

(b) rotational diffusivity DR,
Figure 18. The diffusivities are plotted in terms of At/ At The vertical axis is normalized by Dj.
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0 1 1 th=10, ﬂ=5
) O xx component
H @ yycomponent
— y=hx

0 0.05 0.1

(b) bottom-heavy squirmers (Gy,, = 100)

Figure 21. Correlation between DR, and ¢ (G, = 100, 5= 5). DR, ; is the converged rotational diffusivity after a
sufficiently long time.
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2D — aggregation or alignment
3D - diffusive spreading?

- some aggregation as well
(see paper by J T Locsel)?
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