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OUTLINE

1 Bioconvection
• Mechanisms
• Model
• Instability of a uniform suspension
• Predictions for algae, bacteria, spermatozoa

2 Concentrated suspensions
• Coherent structures
• Simulations
• Pairwise interactions of squirmers
• Diffusion or aggregation?
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Particle Tracking  (projection)

The result of measuring the velocities.  Each cross corresponds to velocity 
detected.  Number of tracks analysed is 359, number of points displayed is 
2168.  Dense cloud below the origin corresponds to sedimenting particles.

Vladimirov, V.A. et al (2000) Marine & Freshwater Res. 51: 589-600.
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Cell Conservation

[+ birth, death, etc]

where

= mean cell swimming velocity,

= flux due to random cell swimming (chemokinesis)

Both consequences of cell swimming, directed and random respectively
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Cell Conservation Equation

The random swimming behaviour can be quantified in terms of a 
probability density function for the cell swimming direction      
[and, in principle, another one for swimming speed ].  Then 
ensemble averages are defined by 
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where the integral is taken over the unit sphere in        space.

Thus

But what is 

And how do we calculate
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Rational model (?)

P&K (JFM, 212, 155-182, 1990)
Intrinsic randomizing influences are balanced by 
the tendency to return to satisfies a 
Fokker-Planck equation:

(probability conservation in space)
(treats the suspension as analogous to a colloidal 

suspension subject to Brownian rotation)
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Bottom heavy algae will rotate as a result of the torque balance

But note that sedimenting cells 
with uniform density but asymmetric 
shape will also rotate
(e.g. spermatozoa)

(Katz & Pedrotti 1977;  Roberts & Deacon 2002)
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Torque balance for algae

p
.
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Algal cell

“Puller”
S = + Tl

Sperm          Bacterium
“Pushers”
S = - Tl

[Note that pushers tend to be head-heavy, not bottom-heavy]
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PARAMETER VALUES

C nivalis B subtilis B subtilis Spermatozoa
(upswimming)      (sedimenting)         (sedimenting)

0.2                  5 x 10      ?            -1.4 x 10                 -0.02

1.4                   -3400                      -3400                -1.2 x 10    n

11                     20                           -37                 -6.9 x 10    n

250                    2750                        2750      1200
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_
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For B subtilis this would be about 
10   cells per ml9
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Collective behaviour:

Bioconvection - bottom-heavy algae
(Chlamydomonas nivalis)

Bioconvection - oxytactic bacteria
(Bacillus subtilis)

“Whirls and jets” - bacteria, in 3D or 2D configurations

(Ray Goldstein’s movie)
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Question  - can the observed behaviour of the bacteria 
be explained in terms of hydrodynamic 
interactions alone, not chemical or other 
‘sensory’ signals?
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Recent modelling of collective behaviour of small swimmers:

J-P Hernandez-Ortiz, C G Stoltz & M D Graham                                
Transport and collective dynamics in suspensions of confined  

s           swimming particles       (PRL 95, 204501, 2005)

D Saintillan & M Shelley
Orientational order and instabilities in suspensions of self-locomoting

r            rods       (PRL 99, 058102, 2007)

T Ishikawa, M P Simmonds & T J Pedley
Hydrodynamic interaction of two swimming model micro-organisms

(J Fluid Mech, 568:119-160, 2006)

T Ishikawa & T J Pedley
- The rheology of a semi-dilute suspension of swimming model 

micro-organisms  (J Fluid Mech, 2007)

- Diffusion of swimming model micro-organisms in a dilute suspension
(J Fluid Mech, 2007)    

*
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Saintillan & Shelley

Model the organism as a long prolate spheroid, with a given 
tangential shear stress over part of the surface, the rear for a
pusher, the front for a puller. An “elongated squirmer”.

They use resistive force theory, which ignores near-field
hydrodynamic interactions, and simulate a 3D (fairly shallow)
suspension with periodic boundary condiditons. (They state
that putting in the near-field interactions makes little difference.)

Also, pushers tend to align with neighbours; pullers don’t.

p
no slipshear stress
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Fluid dynamical interaction of two 
swimming model micro-organisms

T. Ishikawa*1 and T. J. Pedley*2

*1 Tohoku University, Sendai, Japan
*2 University of Cambridge, UK

29 June 2004
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The model micro-organism will be assumed to propel 
itself by generating tangential velocities on its surface. 

Envelope model Ciliate

a micro-organism is modeled 
as a rigid sphere with 
squirming surface velocity

squirmer

Pn : Legendre polynominal of order n
Bn : coefficient of mode n

( )

1
1 2 2(cos ) (cos )

3
2sin
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n n
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θ θ θ
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by J.R.Blake (1971)

2. Modelling a micro-organism
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Figure 1. Velocity vectors relative to the translational velocity vector of a squirmer. Uniform flow of speed 1.0, in dimension-
free form, coming from far right. The scales of vectors in (a) and (b) are the same.

(a) β = 1

(b) β = 5

p

p

β = B2/B1

B1 ~ swimming speed

B2 ~ stresslet strength

β > 1 : puller
β < 1 : pusher
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A Closer View
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1. Interaction between two squirmers (Simulation)



Copyright T. Pedley, 2007

Case1: θ1 = π
e1

θ1= π

lx=10

θ2=0

e2 e2 e2

dly|ini=1,2,3,5,10,

Two squirmers are 
facing each other.

Sample movie with 
dly = 1 and β =5.
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Case2: θ1 = π/2

Sample movie with 
dly = -1 and β =5.

e1 θ1= π /2

10

θ2=0

e2 e2e2

dly|ini=-1,-2,-3,-5,-10

10

Two squirmers are 
crossing in a right angle.

Sample movie with 
dly = -5 and β =5.
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e1

10
θ2=0

e2

dly|ini= -1

24.14
In case with a gap in
z direction, there is
no stable condition.

θ1= π /4

Numerical Results : Effect of 3D orientation

When θ1 = π/4 and β =5, there is a stable
condition if we restrict their motion in 2D.

Sample movie with dly = -1.

x
y

z

Sample movie
with dly = -1
and dlz|ini= -0.1
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Compute the motion of many 
interacting squirmers, using the 
database of pairwise interactions

1

2      Use full Stokesian Dynamics
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Simulation shows aggregation in 2D, not in 3D

2D-c01 3D-c01
2D-c05 3D-c04

Bottom-heavy

2D-bh-c01 3D-bh-c01
2D-bh-c05
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2D – aggregation or alignment

3D - diffusive spreading?
- some aggregation as well

(see paper by J T Locsei)?
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Diffusion tensor, D
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In case of non-BH squirmers, their orientation is isotropic.
Therefore, the diffusion tensor is also isotropic. Hence we
discuss only the following quantities:
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Diffusion tensor, D
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SCALING

A squirmer’s velocity changes in direction, not (much) in 
magnitude, due to interactions with others.

In a semi-dilute suspension such interactions can be considered
as pairwise collisions, interspersed with more-or-less straight runs.

Hence model the system as molecules in a gas (kinetic theory):
a random walk of runs separated by near collisions.
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Speed of squirmer ~   U (constant)

Distance travelled between collisions   ~   L

Time between collisions   ~ t         =   L    /U

Volume swept out in this time   V    =  π a  U t 

mfp

mfp mfp

mfp
2

This will contain one other squirmer if

volume fraction    c  =  4 π a  /3V

i.e.   t      =  4a/(3Uc)  =  4/(3c) in dimensionless terms

3

mfp
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But the time required for a significant change of orientation
Will be the effective duration of a collision, independent of 
the number of collisions. 
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Figure 9. The results of figure 6 are replotted by using different characteristic time Δtmfp and Δtmps. The vertical 
axis is normalized by Dinf.

(b) rotational diffusivity replotted against Δt / Δtmfp

(a) translational diffusivity replotted against Δt /Δtmfp

10-2 10-1 100 10110-2

10-1

100

Δ  t / Δ  tmfp
D

T  / 
D

T in
f

 β  =  5
 c=0.1
 c=0.075
 c=0.05
 c=0.025

10-2 10-1 100 101

10-1

100

Δ  t / Δ  tmfp

D
R  / 

D
R

im
f

 β  =  5
 c= 0.1
 c= 0.075
 c= 0.05
 c= 0.025



Copyright T. Pedley, 2007

Figure 9. The results of figure 6 are replotted by using different characteristic time Δtmf. The vertical axis is 
normalized by Dinf.

(c) rotational diffusivity replotted against normal Δt
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Magnitudes?

Random walk model:   

D       = U L    /3 ~ t     /3   =  4/(9c)
Tinf mfp mfp

D       = ~  cRinf
< Δ ω  >2

_______
6 t mfp

∼   t -1
mfp
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Figure 10. Correlation between Dinf and c (β = 5). Dinf is the converged diffusivity after a sufficiently long time.

(b) rotational diffusivity
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(a) translational diffusivity
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Bottom-heavy squirmers ?

They all have a preferred swimming direction – upwards

Mean free path not significant – squirmer interaction     
dominated by configuration of surrounding squirmers, which 
changes on a length scale proportional to the particle 
spacing:

L     =    4πa   
3c

t      ~    (4π/3c)

mps

mps

_____( )1/3

1/3

3
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Figure 18. The diffusivities are plotted in terms of Δt / Δtmps. The vertical axis is normalized by Dinf.
(b) rotational diffusivity DR

yy

(a) translational diffusivity DT
xx

10-2 10-1 100 101

10-1

100

Δ  t / Δ tmps

D
R yy

 / 
D

R yy
,in

f

Gbh=10, β=5
 c=0.1
 c=0.075
 c=0.05
 c=0.025



Copyright T. Pedley, 2007

Figure 21. Correlation between DR
inf and c (Gbh = 100, β = 5). DR

inf is the converged rotational diffusivity after a 
sufficiently long time.

(b) bottom-heavy squirmers (Gbh = 100)
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2D – aggregation or alignment

3D - diffusive spreading?
- some aggregation as well

(see paper by J T Locsei)?
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