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Ionic conductivity enabled through salt dissolution and ion motion
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Ion conductivity depends on ion-polymer interactions and polymer architecture
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Total ionic conductivity depends on 
ion concentration and mobility 

𝜎 =
𝐹2

𝑅𝑇
(𝑧+

2𝑐+𝐷+ + 𝑧−
2𝑐−𝐷−)

Cation contribution given by 
transference number

𝑡+ =
𝜎+

𝜎𝑡𝑜𝑡𝑎𝑙
=

𝑧+𝐷+
𝑧+𝐷+ + 𝑧−𝐷−



Labile metal-ligand coordination provides inspiration

Metal–ligand interactions are 
• well-defined
• highly tunable
• dynamic

Self-healing: Mozhdehi, Neal, Grindy,  Cordeau, Ayala, 
Holten-Andersen, Guan. Macromolecules 2016, 49, 6310-6321.

ZnL4
2+ CuL4

2+ CoL6
2+



Synthetic platform for systematic tunability
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Critical questions about multivalent polymer electrolytes

1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?

2. Do multivalent ions conduct?

3. Can we develop design rules for improved conductivity performance?



PEO derivative enables understanding effect of metal identity

High segmental mobility backbone Faster conduction

Linker

valency

Li+ Ni2+ Fe3+

Cu2+

Zn2+

M:

Changing ion

Constant cation-imidazole ratio: 
r = [Mz+]/[Ligand] = 0.1

Covalently tethered ligand 
(Imidazole)

PIGE
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Dramatic tunability in polymer mechanics with metal identity

Metal-ligand coordination interaction results in slower network dynamics
Valency not a good indicator of binding strength
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Dramatic tunability in complex viscosity with metal identity

Viscosity

Frequency

PIGE

Metal-ligand coordination interaction results in slower network dynamics
Valency not a good indicator of binding strength



Increase in viscosity without decrease in conductivity
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Increase in viscosity without decrease in conductivity

Ionic conductivity

Zero frequency viscosity increases by ~103

Ionic conductivity remains flat

Zero-frequency 

viscosity

V

Slower metal-ligand binding dynamics



Critical questions about multivalent polymer electrolytes

1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
→ Bulk mechanical properties are decoupled from total ionic conductivity

2. Do multivalent ions conduct?

3. Can we develop design rules for improved conductivity 
performance?



Which ions are contributing to the total measured ionic conductivity?

1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
→ Bulk mechanical properties are decoupled from total ionic conductivity

2. Do multivalent ions conduct?

3. Can we develop design rules for improved conductivity 
performance?

Mechanical properties dominated 
by cation identity

Does the cation also contribute to 
the ionic conductivity?

?



Pulsed-field-gradient NMR measures ion diffusion

Sorland. Dynamic Pulsed-Field-Gradient NMR, Ch 1. Berlin, Heidelberg: Springer (2014)
Wu, Chen, Johnson. J. Magn. Reson., Ser. A. 1995, 115, 260−264.

To detector

RF coil

Sample

Gradient coil

Homogenous magnetic field

G

𝜎 =
𝐹2

𝑅𝑇
(𝑧+

2𝑐+𝐷+ + 𝑐−𝐷−)

Li+

Measure diffusion coefficients via pulsed-field-
gradient NMR
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Cations contribute to the ionic conductivity

𝜎 =
𝐹2𝑐+
𝑅𝑇

𝑧+
2𝐷Li + 𝑧+𝐷𝑇𝐹𝑆𝐼 𝜎 =

𝐹2𝑐+
𝑅𝑇

𝑧+
2𝐷𝑍𝑛 + 𝑧+𝐷𝑇𝐹𝑆𝐼

Both Li+ and TFSI– contribute to 
conductivity

Likely Zn2+ and TFSI– contribute to 
conductivity

?



Divalent species contribute similarly to monovalent ones

𝑡+ =
𝑧+𝐷+

𝑧+𝐷+ + 𝑧−𝐷−Zn2+

Li+

6×10–8 cm2 s–1

3×10–8 cm2 s–1

8×10–8 cm2 s–1

𝑧+𝐷+

𝐷+

Zn2+: 𝑡+ = 0.13

Li+: 𝑡+ = 0.18

Divalent species move slower, but carry twice the charge

T = 80 °C



Critical questions about multivalent polymer electrolytes

1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
→ Bulk mechanical properties are decoupled from total ionic conductivity

2. Do multivalent ions conduct?
→ Transference numbers measured by PFG NMR suggest divalent cation contribution to conductivity

3. Can we develop design rules for improved conductivity performance?
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Ionic conductivity can be improved by tuning linker chemistry
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Removal of amide group enables 10x improvement in conductivity with larger transference number

𝑡+,𝐴𝑚𝑖𝑑𝑒 = 0.18 𝑡+,𝐶𝐻2 = 0.46



Critical questions about multivalent polymer electrolytes

1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
→ Bulk mechanical properties are decoupled from total ionic conductivity

2. Do multivalent ions conduct?
→ Transference numbers measured by PFG NMR suggest divalent cation contribution to conductivity

3. Can we develop design rules for improved conductivity performance?
→ Eliminate deleterious interactions between ions and polar groups
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