Decoupling Mechanics from Ion Transport in Polymers

Nicole Michenfelder-Schauser APS March Meeting 2020 Padden Award Symposium

Segalman and Seshadri groups University of California, Santa Barbara

March 4, 2020

Ionic conductivity enabled through salt dissolution and ion motion

Ionic conductivity enabled through salt dissolution and ion motion

Ion conductivity depends on ion-polymer interactions and polymer architecture

Ion conductivity depends on ion-polymer interactions and polymer architecture

Total ionic conductivity depends on ion concentration and mobility

$$\sigma = \frac{F^2}{RT}(z_+^2 c_+ D_+ + z_-^2 c_- D_-)$$

Cation contribution given by transference number

$$t_{+} = \frac{\sigma_{+}}{\sigma_{total}} = \frac{z_{+}D_{+}}{z_{+}D_{+} + z_{-}D_{-}}$$

Labile metal-ligand coordination provides inspiration

Metal-ligand interactions are

- well-defined
- highly tunable
- dynamic

Self-healing: Mozhdehi, Neal, Grindy, Cordeau, Ayala, Holten-Andersen, Guan. *Macromolecules* **2016**, *49*, 6310-6321.

Synthetic platform for systematic tunability

- 1. Sanoja, Schauser, Bartels, Evans, Helgeson, Seshadri, Segalman. Mαcromolecules 2018, 51, 2017-2026.
- 2. Schauser, Sanoja, Bartels, Jain, Hu, Han, Walker, Helgeson, Seshadri, Segalman. Chem. Mater. 2018, 30, 5759-5769.
- 3. Schauser, Grzetic, Tabassum, Kliegle, Le, Susca, Antoine, Keller, Delaney, Han, Seshadri, Fredrickson, Segalman, *J. Am. Chem. Soc. Under revision.*

Synthetic platform for systematic tunability

- 1. Sanoja, Schauser, Bartels, Evans, Helgeson, Seshadri, Segalman. Mαcromolecules 2018, 51, 2017-2026.
- 2. Schauser, Sanoja, Bartels, Jain, Hu, Han, Walker, Helgeson, Seshadri, Segalman. *Chem. Mαter.* **2018,** *30*, 5759-5769.
- 3. Schauser, Grzetic, Tabassum, Kliegle, Le, Susca, Antoine, Keller, Delaney, Han, Seshadri, Fredrickson, Segalman, *J. Am. Chem. Soc. Under revision.*

Critical questions about multivalent polymer electrolytes

1	Can we achieve appealing	mechanical	properties w	ithout a detrin	nental effect on	conductivity?
	can we define we appearing	, meemanicar	properties w	richoot a actini	incircal cricci on	Conductivity.

2. Do multivalent ions conduct?

3. Can we develop design rules for improved conductivity performance?

PEO derivative enables understanding effect of metal identity

Metal-ligand coordination interaction results in slower network dynamics Valency not a good indicator of binding strength

Dramatic tunability in complex viscosity with metal identity

Metal-ligand coordination interaction results in slower network dynamics Valency not a good indicator of binding strength

Increase in viscosity without decrease in conductivity

Zero frequency viscosity increases by ~10³

Increase in viscosity without decrease in conductivity

Zero frequency viscosity increases by ~10³ Ionic conductivity remains flat

Critical questions about multivalent polymer electrolytes

- 1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
- → Bulk mechanical properties are decoupled from total ionic conductivity
- 2. Do multivalent ions conduct?

3. Can we develop design rules for improved conductivity performance?

Which ions are contributing to the total measured ionic conductivity?

- 1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
- → Bulk mechanical properties are decoupled from total ionic conductivity
- 2. Do multivalent ions conduct?

3. Can we develop design rules for improved conductivity performance?

Mechanical properties dominated by cation identity

Does the cation also contribute to the ionic conductivity?

Pulsed-field-gradient NMR measures ion diffusion

Measure diffusion coefficients *via* pulsed-field-gradient NMR

$$I = I_0 e^{-\gamma^2 G^2 D \delta^2 (\Delta - \frac{\delta}{3})}$$

$$\sigma = \frac{F^2}{RT} (z_+^2 c_+ D_+ + c_- D_-)$$

Sorland. *Dynamic Pulsed-Field-Gradient NMR, Ch 1.* Berlin, Heidelberg: Springer (2014) Wu, Chen, Johnson. *J. Magn. Reson., Ser. A.* **1995,** 115, 260–264.

Likely Zn²⁺ and TFSI⁻ contribute to conductivity

Divalent species contribute similarly to monovalent ones

$$t_{+} = \frac{z_{+}D_{+}}{z_{+}D_{+} + z_{-}D_{-}}$$

$$Zn^{2+}$$
: $t_{+} = 0.13$

$$Li^+: t_+ = 0.18$$

Divalent species move slower, but carry twice the charge

Critical questions about multivalent polymer electrolytes

- 1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
- → Bulk mechanical properties are decoupled from total ionic conductivity

- 2. Do multivalent ions conduct?
- → Transference numbers measured by PFG NMR suggest divalent cation contribution to conductivity
- 3. Can we develop design rules for improved conductivity performance?

Critical questions about multivalent polymer electrolytes

- 1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
- → Bulk mechanical properties are decoupled from total ionic conductivity

- 2. Do multivalent ions conduct?
- → Transference numbers measured by PFG NMR suggest divalent cation contribution to conductivity
- 3. Can we develop design rules for improved conductivity performance?

Ionic conductivity can be improved by tuning linker chemistry

Critical questions about multivalent polymer electrolytes

- 1. Can we achieve appealing mechanical properties without a detrimental effect on conductivity?
- → Bulk mechanical properties are decoupled from total ionic conductivity

- 2. Do multivalent ions conduct?
- → Transference numbers measured by PFG NMR suggest divalent cation contribution to conductivity

- 3. Can we develop design rules for improved conductivity performance?
- → Eliminate deleterious interactions between ions and polar groups

Acknowledgements

