
Extended abstract. 

 

De Gennes met percolation first almost when the concept appeared ; his first two contribution, 

with Lafore and Millot date from 1959, and they point out clustering effects. They also refer 

to the work of Kasteleyn and Fortuin.  

He then spent a long period without considering percolation, until the middle of the 70’s. 

 

Let me remind that gelation takes place when one lets multifunctional units react in a vessel. 

One then observes that one gets a solution that is more and more viscous, indicating that the 

mass of the polymers being synthesised becomes larger and larger. This is the “sol” phase. 

Above a threshold, in time in this experiment, one gets an elastic solid, even though its 

modulus is very low close to the threshold. (this is in addition to the sol). 

This special “liquid-to- solid” transition was described on a purely geometrical basis by Flory, 

Stockmayer and Zimm, among others, within a mean field approximation: they worked on a 

Cayley tree, where no loops are possible, and without interactions. Any two points on a 

branched polymer are related by one single linear path, and the problem is to some extent one 

dimensional, and soluble exactly (slide 4). 

They found a very large distribution of masses, that may not be reduced to a single mass: the 

weight and z average masses do not diverge the same way near the threshold. The variations 

of various quantities (slide 5) such as masses or distances as a function of the distance ε from 

the threshold were determined. Note that the characteristic distance ξ is either the radius of 

the largest polymers, or the size of the “node to node distance” for a gel. If one eliminates ε, 

one finds that the radius of gyration of the polymers varies with mass with an exponent ¼. 

Such exponent is too low, and it implies, in the three dimensional case, that the density inside 

the sphere that contains the polymer grows with mass, and eventually diverges. Therefore 

something had to be done.  

Note also that the Cayley tree cannot be embedded in a space with finite dimension, because 

the number of elements grows exponentially. Therefore the “classical “ result corresponds to 

infinite dimension, and is the mean field limit, which was shown to be valid for space 

dimension above 6. 

In the general case, the solution was brought by de Gennes and Stauffer in 1976, who showed 

the equivalence between the sol- gel and the percolation transitions. The example shown in 

slide 6 is bond percolation on a square lattice in two dimensions. Very generally, it is found 

again that there is a very broad distribution of masses, characterized by two diverging masses 

and not a single one, the weight average and largest masses for instance. The distribution 

function decreases as a power law when mass increases, with an exponent τ that depends on 

the dimension of space. For very large masses, above a “largest mass”, the distribution 

decreases exponentially. The exponent  τ may be related to the fractal dimension of the 

polymers in the reaction bath, that is to the fractal dimension of percolation. This relation was 

discussed by Cates, who showed that it corresponds to a C* situation for a given value of N: 

each class of polymers with given N is at C*. Because they are fractal, much space is left, 

which is occupied by smaller polymers, still at C* for each mass. The resulting monomer 

concentration is unity at every point. 

This variation of the distribution was checked experimentally by several groups (Leibler et al, 

Rubinstein and Colby, Schaefer, Martin et al., Lapp), who measured the value of τ , which 

they found roughly equal to 2.2 (slide 7). What is important is that the various groups used 

various methods for synthesis (cross-linking by irradiation, end-linking, ..), showing that the 

“ details“ of the chemistry are not important, as long as the main assumptions are fulfilled. 

These are that chemistry dominates, and that diffusion is not important. The latter becomes 

important when the reaction bath is a dilute solution. 



The difference between percolation clusters and animals was considered by de Gennes in 

1980. We recall that animals are obtained by considering all the possible configurations with 

N units, with same weight for each of the configurations. This is the first difference with 

percolation clusters, where an occupied site has probability p, and a vacant one a probability 

(1-p). A second difference comes from the evaluation of the fractal dimensions in both cases. 

This was done in a Flory approximation, which was also used by Lubensky and Isaacson.  

For animals, one writes down a Flory free energy that has two contributions (slide 8). The 

first one is an entropic contribution, where the denominator is the square of the ideal radius, 

and the second one the classical interaction term, where the 2 monomer interaction only is 

kept because we consider a good solvent. 

Minimization of this free energy leads to an exponent equal to ½ for d = 3. Note also that the 

critical dimension, where the exponent equals the mean field value is 8. 

A Flory free energy may also be written for a sol near the gelation threshold (slide 9). It has 

the same form as for the animas, with one important difference: because the reaction bath is 

concentrated, the interaction term is screened. This corresponds to the Edwards screening for 

linear chains. Here, because of the polydispersity , the interaction term is divided by the 

weight average molecular weight. This leads to a larger value, 2.5 for the fractal dimension of 

the branched polymers in the reaction bath. Note also that the critical dimension is 6 instead 

of 8 for animals. 

One way to check both polydispersity and the value of the fractal dimension for animals is by 

neutron scattering. Bouchaud et al. considered a solution where the branched polymers were 

first synthesized. Then the sol was heavily diluted, the distribution of masses being quenched. 

Two experiments were performed, on the distribution, and on a fraction of it. The curves, 

plotted in log- log plots, obtained in Saclay, show a clear difference between the slopes for 

both cases. The experiments (slide 11) on the fraction lead to a value 2  for the fractal 

dimension, in good agreement with the above discussion. The slope 1.7 for the polydisperse 

sample leads to an effective value for the fractal dimension (slide 10), implying both the 

fractal dimension of the polymers and the exponent τ of the distribution. This leads to a value 

for τ in good agreement with the previous one. 

So far, we considered the simple case when the units that are reacting are small 

multifunctional units. What if one cross links linear chains in a melt? This is called 

Vulcanization, and was considered by de Gennes in 1977 (slide 12). A simple way to consider 

this is again to write down a Flory free energy. In order to do this, one has to carefully 

separate what is coming from gelation and from the fact that units are now long linear chains, 

made of Z monomers, and radius Z
1/2
. 

One finds the relation that is on slide 12, and shows that contributions from gelation and 

linear chains compete if we consider the interaction term. Clearly the contribution coming 

from ε diverges, whereas that from Z vanishes. In order to observe critical exponents, the 

interaction term should be large. If it is not, mean field, Flory- Stockmayer- Zimm exponents 

are observed. This defines the width of the critical region (and is equivalent to the Ginzburg 

criterion in critical phenomena). Comparing the two contributions, one finds that the critical 

region is very small for large Z. Thus mean field exponents should be observable. This seems 

to be in contradiction with the large density argument that was mentioned above. But it is not: 

In vulcanization, one has indeed a very large density of objects, but each of these is a fractal 

with very small density, Z
-1/2
. Therefore, one may, to some extent, increase the density and 

compensate. This was checked experimentally by Colby and Lusignan. 

So far, we considered the static properties, and there seems to be a consensus that such 

properties are, to a large extent, understood. The situation, as usual, is more delicate foe the 

dynamic and rheological properties. These are characterized by the exponents s for the 

viscosity, and t for the modulus (slide 3). Both of them were considered by de Gennes. 



The viscosity exponent s was considered within a Rouse approximation (slide 13), where no 

hydrodynamic interaction is present. In this case, de Gennes considered a sol in a longitudinal 

flow, and calculated its dissipation rate. He showed that this may be related to the weight 

average radius of gyration, leading to a value s = dν − β. This is in agreement with a 

calculation by Stephen for a mixture of normal and superconducting links. Other relations 

were suggested, assuming some hydrodynamic interactions. 

Similarly, he also evaluated the exponent t for the modulus (slide 14). He used an analogy 

with a random array of conductances, present with probability p. The modulus is equivalent to 

the conductance.In order to evaluate the flux through a sphere with radius ξ, he introduced the 

notion of active path between nodes, leading to a first approximation for the exponent t. Later, 

it was recognized that the active path does not diverge in the simple way that was initially 

assumed, and de Gennes’ result was generalized. A challenging relation was suggested by 

Coniglio et al., who assumed that the modulus is merely related to the density of nodes, 

leading to t = dν. Experimentally, the situation is not as clear as for the static properties, 

because of the difficulty for direct measurements.  

The frequency dependent modulus, however was measured by several groups. This may be 

written in a scaled form (slide 15), implying a longest time. For large frequencies, it behaves 

as a power law with an exponent that depends on both s and t. The experimental value (slide 

16) that was found, approximately 2/3, however could not discriminate between the various 

assumptions that were made, and the problem is still rather open to a fresh idea or experiment. 

A final idea that I discuss concerns the incoherent scattering by a dilute system of 

labelled monomers (slide 18). Here each branched polymer is ideally labelled by one of its 

monomers, and one looks at the motion of these labelled monomers over large distances. 

Then the scattered intensity may be approximated, for small q, by a Gaussian, with a diffusion 

coefficient D that depends on the viscosity. The distances that are considered here are large 

compared to the size of a monomer, but small compared to that of a branched polymer. This 

led de Gennes to assume that for these intermediate distances, the viscosity is local, and 

depends on distance. He introduced, also for the first time, an interpolation relation between 

distances on the order of the monomer, where he assumed the viscosity to be that of a 

“solvent”, therefore finite, and distances on the order of the largest polymers, where viscosity 

diverges with the exponent s. this allows him to find a diffusion coefficient that depends on 

the size of each polymer. Averaging over the distribution leads to an intensity that varies as a 

power law of both frequency and q, with exponents that depend again on s and t. (and the 

exponent β for the gel fraction).  

We conclude by noting that he had an extraordinary contribution to the understanding of the 

sol- gel transition. Only some aspects were developed above, and others, some of which are as 

important, were not considered here, but led to experimental realizations. Many aspects are 

still open, even though de Gennes opened the way.  

A list of the corresponding publications is given below, showing the variety of his work in 

this area. I apologize if this is not complete. I tried to track his publications the best I could, 

but I might have missed some. The following list should however hopefully give some ideas 

during some time.. 
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