# DYNAMICS OF POLYMER SOLUTIONS 2008 APS symposium honoring P.-G. de Gennes

William W. Graessley, Princeton University

- 1) Molecular Size, Radius of Gyration  $R_{p}$
- 2) Osmotic Pressure  $\pi$ , Interaction Parameter  $\chi$
- 3) Plateau Modulus  $G_N^{o}$  (Entanglement Molecular Weight  $M_e$ )
- 4) Zero-Shear Viscosity  $\eta_o$  (Characteristic Molecular Weight  $M_c$ )
- 5) Monomeric Friction Coefficient  $\zeta_{0}$

# **FLEXIBLE CHAIN LINEAR POLYMERS**



chain length  $\propto M$ 

coil size  $R_{g}$ 

good solvent  $R_g \propto M^{0.588}$ 

(self-avoidance, excluded volume interaction)

theta solvent  $R_g \propto M^{0.5}$ 

(volume exclusion cancelled)

### CHAIN DIMENSIONS, GOOD AND THETA SOLVENTS



for  $M < M^{\ddagger}$ , good and theta sizes are the same

INTRINSIC VISCOSITY,  $[\eta] = \lim_{c \to 0} \frac{\eta(c) - \eta_s}{\eta_s c}$ , A PERVADED VOLUME MEASURE



theta solvent:  $[\eta] \propto M^{0.50}$  , good solvent:  $[\eta] \propto M^{0.76}$ 

# INFLUENCES ON FLEXIBLE COIL DYNAMICS IN SOLUTION



**Dilute Range:** 

1) excluded volume

2) hydrodynamic interaction

overlap concentration  $c^* \text{ or } \phi^*$ :

when c (or  $\phi$ ) reaches  $c_{self}$  (or  $\phi_{self}$ )

**Beyond Overlap:** 

3) hydrodynamic drag

4) mutual uncrossability

**OSMOTIC PRESSURE:**  $\pi = \frac{\mu_s(c) - \mu_s(0)}{V_s}$ 





# **CHAIN DIMENSIONS VS CONCENTRATION**

#### By screening analysis:

$$R_{g}^{2}(\phi) = R_{g}^{2}(0)(\phi/\phi^{*})^{-\frac{2\nu-1}{3\nu-1}} = R_{g}^{2}(0)(\phi/\phi^{*})^{-0.23}$$

Where does  $R_g \operatorname{reach}(R_g)_{\theta}$ ?

$$\phi^{\ddagger} = \phi^* \left( R_g(0) / (R_g)_{\theta} \right)^{2/0.23} \propto M^0$$



| Polymer Species | <b>\$\$</b> | <b>M</b> ‡ |
|-----------------|-------------|------------|
| PS              | 0.10        | 13,200     |
| PaMS            | 0.10        | 17,000     |
| PMMA            | 0.14        | 11,000     |
| PDMS            | 0.11        | 13,000     |
| PIB             | 0.070       | 19,000     |
| PI              | 0.14        | 3,800      |
| PBD             | 0.085       | 5,200      |
| PE              | 0.050       | 6,500      |
| iPP             | 0.11        | 6,600      |
| PEO             | 0.070       | 6,700      |

Log ø

# WHY IS $M^{\ddagger}$ SO LARGE?

**PS-TOL:**  $M^{\ddagger} \sim 10^4$ , 200 Backbone Bonds, 20 Kuhn Steps

Self-avoiding Walks ( $\chi = 0$ ),  $M^{\ddagger} \Rightarrow \sim 2$  Kuhn Steps

Flory coil swelling formula leads to  $(M^{\ddagger})^{1/2}(1-2\chi) = \left(\frac{8\pi N_a V_s}{3\overline{\upsilon}^2}\right) \left(\frac{R_g^2}{M}\right)_{\theta}^{3/2}$ ,

then to  $\chi = 0.34$ , and finally to the inference,  $\phi^{\ddagger} \sim 0.32$  for  $\chi = 0$ .

 $\chi \gtrsim 0.3$  For most polymer solutions. Why?

$$\frac{\chi RT}{V_S} \sim \left(\delta_S - \delta_P\right)^2 + \frac{\alpha_S T \delta_S^2}{2} \left(\frac{\alpha_S - \alpha_P}{\alpha_S}\right)^2 + \cdots$$
  
CED mismatch FV mismatch ETC

On average,  $\alpha_{_S}/\alpha_{_P} \sim 1.7$  , leading to  $\chi_{_{FV}} \sim 0.3$ 

# CONCENTRATED SOLUTIONS, $\phi^{\ddagger} < \phi < 1$



- 1) Intramolecular interactions screened out
- 2) Free-draining flow patterns
- 3) Entanglement and local drag dominate the dynamics
- 4) Reptation is a primary mechanism for relaxation

### **STRESS RELAXATION MODULUS**



### PLATEAU MODULUS VS CONCENTRATION



$$M_e(\phi) = \frac{\rho \phi RT}{G_N^o(\phi)} = M_e \phi^{-1.3}$$

 $E(\phi, M) = \frac{M}{M_e(\phi)}$  entanglements/chain

Polybutadiene, 925k, in a good solvent (PO), a near theta solvent (DOP) and a 1.8k PBD oligomer.

$$G_{_{N}}^{\mathrm{o}}(\phi) = 1.15 \times 10^{6} \phi^{2.29} (Pa)$$

 $5 < E(\phi, M) < 490$ 

### **OSMOTIC MODULUS vs ENTANGLEMENT MODULUS**



**Doi-Edwards theory:** 

$$G_{N}^{o}(\phi) \propto \frac{\phi}{\left[\alpha(\phi)\right]^{2}}$$

binary contact density:

 $\nu(\phi) \propto \phi^2$ 

distance between contacts:

 $d \propto v^{-1/3} \propto a \propto \phi^{-0.67}$ 

 $(a(\phi) = a(1)\phi^{-0.61}$  NSE)

so, for theta or good solvents:

 $G^{\mathrm{o}}_{\scriptscriptstyle N}(\phi) \propto \phi^{7/3} \propto \phi^{2.33}$ 

Milner 2005:  $G_{N}^{\circ}/\pi = 0.025 (R_{g}^{\dagger}/l_{p})^{2/3}$ 

## **VISCOSITY vs CONCENTRATION**



 $\eta_{o}$  = (monomeric friction)x(structural factor)

$$\eta_{o} = \zeta_{o}(T, \phi, \cdots) F(\phi, M)$$

When corrected for end effects:

$$\eta_{o}(\phi, M) \propto \phi M$$
  $\phi M < \phi M_{c}$   
 $\eta_{o}(\phi, M) \propto (\phi M)^{3.4}$   $\phi M > \phi M_{c}$ 

For PVAc:

$$M_e = 9.5k$$
  
 $M_c = 24.5k$ 

$$\phi M$$
 or  $\phi^{1.3}M$  for  $\eta_0$ ?

Adjusted to constant monomeric friction coefficient:



### **CONCENTRATION – MOLECULAR WEIGHT DIAGRAMS**

good solvent (  $\chi \sim 0.4$  )

theta solvent ( $\chi = 0.5$ )



# **FREE VOLUME ADJUSTMENTS**

