Controlled Hydrogen Release From Ammonia Borane Using Mesoporous Scaffolds.

APS LA

March 2005

Pacific Northwest National Laboratory U.S. Department of Energy

Outline

- Background NH_xBH_x
 - Thermal decomposition pathways
- Approach
 - Mesoporous scaffolds
- Results
 - Thermodynamic and Kinetic Comparisons
- Future Work

NH_xBH_x Store significant quantity of hydrogen (>6 wt%/step)

	Wt% H ₂	T (*C)
$NH_4BH_4 \rightarrow NH_3BH_3 + H_2$	6.1	<25
$NH_3BH_3 \rightarrow NH_2BH_2 + H_2$	6.5	<120
$NH_2BH_2 \rightarrow NHBH + H_2$	6.9	>120
NHBH \rightarrow BN + H ₂	7.3	>500

Two sequential steps > 12 wt% hydrogen

Favorable Thermodynamics?

 $BH_4 + 4H_2O \rightarrow B(OH)_4 + 4H_2$ $\Delta H = -60 \text{ kcal/mol}$

Pacific Northwest National Laboratory U.S. Department of Energy 4

Materials for H₂ Storage

Ref: A. Züttel, "Materials for hydrogen storage", materials today, Septemper (2003), pp. 18-27

Ammonia Borane vs Ethane Any similarities?

Isoelectronic Isomers

	H ₃ N→BH ₃	H ₃ C—CH ₃
MW	30.81	30.07
Mp[°C]	114	-172
bonding	dative	covalent
DH ^o [kcal/m]	31	90
M[D]	5.2	0
R[A]	1.66	1.53
Wt% H2	19%	19%

How is hydrogen released?

Hydride atoms act as Proton acceptor

Pacific Northwest National Laboratory U.S. Department of Energy 7

Thermolysis of Ammonia Borane

$$\begin{array}{cccc} \mathrm{NH}_3\mathrm{BH}_3 \xrightarrow{} (\mathrm{NH}_2\mathrm{BH}_2)_n + \mathrm{H}_2 &+ ? & <120 \\ \mathrm{(NH}_2\mathrm{BH}_2)_n \xrightarrow{} (\mathrm{NHBH})_n &+ \mathrm{H}_2 &+ ? & >120 \end{array}$$

Are there other 'products'? is the hydrogen clean? (*borazine*) How is the H₂ released? mechanism (*solid state*) What is the activation barrier? can we change it with catalysis, (*other*) Can the reaction be reversible? **T**(**C**)

Volatile Products from NH₃BH₃

$NH_3BH_3 \rightarrow Products + H_2 \rightarrow Products + H_2$

Pacific Northwest National Laboratory U.S. Department of Energy 9

DSC: 20 – 200 °C (5 °C/min, Ar 40 ml/min)

NH₃BH₃ Challenges

- Meets and exceeds DOE gravimetric & volumetric targets
- Need to lower temperature (or increase rates)
 Minimize volatile (borazine)
- Can this be reversible?
 - Not making B-O bonds ($\Delta H = -60$ kcal/mol)
 - Release of H_2 near thermoneutral ($\Delta H = -5$ kcal/mol)

How does nano science improve the efficiency of hydrogen storage?

Hypothesis: Nano phase hydrogen storage materials can have different thermodynamic and kinetic properties compared to bulk hydrogen storage materials.

Nano particles of Hydrogen Storage material

- Control Reactivity (enhanced rate of hydrogen release)
- Control Selectivity (prevent borazine formation)
- Can we prevent fusion of the nanoparticles as the reaction proceeds? (Don't want to lose nano properties)

Approach: Nano-scale Scaffolds

U.S. Department of Energy 12

Use mesoporous silica (SBA-15) as a scaffold 6-7 nm wide channels to *hold* Ammonia Borane (NH_3BH_3) in the nano-phase. Should also preserve nanophase. Trap borazine in pores?

Add saturated solution of NH₃BH₃ to SBA-15

Ammonia borane infiltrated

Volatile Products from NH₃BH₃ in SBA-15 mesoporous scaffold

U.S. Department of Energy 14

Hydrogen at lower temperature

DSC temperature ramp 1 °C/min

Thermochemistry Comparison

ΔH_{rxn} for loss of H_2 from AB (neat vs. scaffold)

Thermochemistry H₂ release

Thermochemical Comparison

Change in Thermochemistry

Requires change in products

Kinetic Comparison

E_a for loss of H_2 from AB (neat vs. scaffold)

Pacific Northwest National Laboratory U.S. Department of Energy 20

Temperature dependence of H₂ loss from AB

Temperature dependence of H₂ lose from AB/SBA15 NH₃BH₃(s) \rightarrow (NH₂BH₂)(s) + H₂

Kinetic Comparison

Pacific Northwest National Laboratory U.S. Department of Energy 23

Rates as function of temperature

Arrhenius treatment of H₂ formation

Summary

- Selectivity of H₂ release from AB
 - No borazine seen in volatile products or left behind in scaffold.
 - No cyclized products observed in NMR and DSC data show process is less exothermic
- Reactivity for H₂ release from AB
 - 1-2 orders of magnitude faster!

Research Needs

•Mechanism of H₂ formation from AB inter or intramolecular?

In neat AB are the dihydrogen bonded hydrogen atoms 'preset' for molecular hydrogen formation?

A barrier for nucleation and a barrier for growth. What is nucleation site/event?

•Why is the rate of H₂ release from AB faster in a mesoporous scaffold?

Chemical (catalytic surface interaction) Physical (nano-phase crystal defects)

Change in products yields change in thermodynamics, what is mechanism for linear polymer growth, (B ---- OSi)?

•How general is the 'mechanism'? Will this work help our understanding of H_2 formation from materials containing both hydridic and protic hydrogen?

65 Å

Acknowledgements

FY04 NanoScience & Technology Initiative this work will be part of the Center of Excellence in Chemical Hydrogen Storage

 J Fulton, Y Chen, M Balasubramanian XAFS
 N Hess, L Daemon, C Brown Neutron Scattering
 W Jiang Ion Beam Synthesis nano BN
 D Matson RESS nano BNH Synthesis
 C Yonker in-situ Hi Pressure NMR

S Addiaman G Fryxell Mesos
V Viswanathan Fuel Cells
G Whyatt Systems Eng
K Peterson Hi Pressure
J Coleman SEM
J Coleman SEM
D LicCready, KRD
Y Shin, S Li SBA-15
C Wang TEN