

Characteristics and Applications of High Intensity Coherent THz Pulses from Linear Accelerators

G. Lawrence Carr

National Synchrotron Light Source Brookhaven National Laboratory

In collaboration with <u>Henrik Loos, Brian Sheehy, Dario Arena, C.-C. Kao, Jim Murphy,</u> and Xijie Wang

APS March 2005 Meeting, Los Angeles CA

Funded under contract: DE-AC02-98CH10886

U.S. DEPARTMENT OF ENERGY OFFICE OF BASIC ENERGY SCIENCES

BROOKHAVEN SCIENCE ASSOCIATES

- Electromagnetic Radiation (in the far IR) from Relativistic Electrons
- Requirements for Coherent (THz) Radiation Emission: Short Electron Bunches
- High Energy Coherent THz Pulses from the NSLS / SDL Linac
- Electro-optic Detection: E-field Strengths Approaching <u>1 MV/cm</u>
- Potential Application: Transient Supercurrents in Thin Film Superconductors
- Summary

Radiation from a Non-relativistic Electron

Radiated field for a brief lateral displacement

Modeled using Radiation2D code Tsumoru Shintake *RIKEN / Spring-8*

NATIONAL SYNCHROTRON LIGHT SOURCE BROOKHAVEN NATIONAL LABORATORY

Coherent THz Pulses: Photoconductive Switch Method

• Radiation from acceleration of photocarriers in a semiconductor.

Radiation from a Relativistic Electron

Relativistic (3 MeV) Coulomb Field

NATIONAL SYNCHROTRON LIGHT SOURCE BROOKHAVEN NATIONAL LABORATORY

Radiation from a Relativistic Electron

Dipole bend (linearly polarized)

Transition (radially polarized)

Calculated using Radiation2D code Tsumoru Shintake *RIKEN / Spring-8*

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

OFFICE OF BASIC ENERGY SCIENCES

Characteristics of (conventional) Synchrotron Radiation

NATIONAL SYNCHROTRON LIGHT SOURCE BROOKHAVEN NATIONAL LABORATORY

Photoconductive switch

NOTE: emitted energy, per electron, is <u>7 orders of magnitude</u> greater than non-relativistic case.

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

Multi-particle Coherent Synchrotron Radiation (CSR)

Accelerators typically have many electrons traveling in a "bunch". Can emission be coherent? <u>Yes</u> -- if bunch (or some portion of it) has length that is <u>short compared to wavelength.</u>

$$\frac{dI(\omega)}{d\omega}_{multiparti\ cle} = \left[N + N(N-1)f(\omega)\right]\frac{dI(\omega)}{d\omega}$$

where
$$f(\omega) = \left| \int_{-\infty}^{\infty} e^{i\omega \hat{n} \cdot \vec{r} / c} S(r) dr \right|^2$$
 (Nodvick & Saxon)

In some accelerators, bunch lengths are 100s of fs (=>THz), and N can be large e.g. $\sim 10^{10}$

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

Making Short Bunches

- Electrons have charge(!) => Coulomb repulsion
 - Coulomb interaction causes spread in the energy distribution of a bunch.
 - For a non-relativistic electron, energy spread => velocity spread => distance spread.
 - BUT: For highly relativistic electrons, velocity spread remains small (mass varies).

=> Start with long bunch, accelerate to high energy, <u>then</u> compress.

Compression method analogous to light, magnets serve as dispersive electron optics.

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

Aside: Other Coherent THz Sources

- Jefferson Lab Energy Recovery Linac (high repetition rate)
- Storage Ring Coherent Synchrotron Radiation

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

JLab FEL & THz facility (Newport News, VA)

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Jefferson Lab facility actual spectroscopic range

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

"Self" Compression in a Synchrotron Storage Ring

- An initially short electron bunch emitting <u>Synchrotron Radiation develops a small energy</u> chirp (electrons at front re-absorb SR emitted from the electrons behind).
- Adjust storage ring dispersion so that bunch slowly compresses over many orbits.
- New equilibrium bunch shape with "sharp" structure => Coherent THz Radiation Requires ring with high RF frequency to develop stable output
 - Unstable/bursting: NSLS VUV (53 MHz), NIST, MAX,
 - Stable: BESSY II (500 MHz), ANKA (500 MHz) (detailed analysis: Byrd, Sannibale et al Berkeley)
 - CIRCE (proposed at Berkeley) (500 MHz to 1.5 GHz)
 - MIT Bates (3 GHz, not yet tested)

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

U.S. DEPARTMENT OF ENERGY OFFICE OF BASIC ENERGY SCIENCES

ces

The NSLS Source Development Lab Linac

X.-J. Wang et al

Photocathode gun produces ~ 0.7nC (4.4x10⁹ electrons) per "shot"

- Coherent output to over 1 THz. Potential for shorter bunches with less charge.
- Low rep. rate (1 to 10 Hz)

Basic Pulse Characteristics

BROOKHAVEN NATIONAL LABORATORY

OFFICE OF BASIC ENERGY SCIENCES

Electro-Optic THz Radiation Setup

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

Signal and Reference

NATIONAL SYNCHROTRON LIGHT SOURCE BROOKHAVEN NATIONAL LABORATORY

Image Processing for Field Measurement

- $-\,$ First, turn down intensity to get "on-scale" for 500 μm thick ZnTe (reduce charge, less compression)
- Reference I_R (left image) and Signal I_S (right image) obtained simultaneously (for each linac pulse).
- Images scaled to match and normalize both.
- Calculate asymmetry A of Signal, subtract pattern w/o THz.

Temporal E-Field Cross Section at Focus

Calculated Focus Distribution of THz

- Expand in Gauss-Laguerre modes and propagate to focus.
- Focus spot size3 mm diameter.
- Single period oscillation.
- 300 fs rms length
- Electric field strength
 ~ 300 kV/cm at 300 pC charge.

Studies using High-Field, Half-Cycle THz Pulses

A 100 μ J, half-cycle THz pulse, focused into a volume of 1 mm³.

- E-field = $[2D_E/\epsilon_0]^{1/2} \sim 10^8 \text{ V/m} (\sim 1 \text{ MV/cm}).$
- => Use large electric field to displace atoms in polar solids (structural phase transitions, soft modes, ferroelectricity, ...), induce <u>large</u> <u>transient currents</u>.
- H-field = E/c ~ 0.3 T
- => Use transient magnetic field to create magnetic/spin excitations and follow dynamics on ps time scale (e.g., time-resolved MOKE).

Or some other shape pulse? (R&D activity to control density modulation)

$$\frac{dI(\omega)}{d\omega}_{\text{multiparti cle}} = [N + N(N-1)f(\omega)]\frac{dI(\omega)}{d\omega} \qquad f(\omega) = \left|\int_{-\infty}^{\infty} e^{i\omega\hat{n}\cdot\vec{r}/c}S(r)dr\right|^2$$

How would a superconductor respond to one of these intense pulses?

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

THz Transmission through a Superconducting Film

Transmission through thin conducting film (thickness *d* on substrate with refractive index *n*)

$$T = \frac{4n}{(n+1+377\sigma_1d)^2 + (377\sigma_2d)^2}$$
where $\sigma(\omega) = \sigma_1 + i\sigma_2$
Drude model for optical response
$$\sigma(\omega) = \frac{\omega_p^2 \tau \varepsilon_0}{(1-i\omega\tau)}$$

$$\frac{1}{\omega}$$

$$\sigma(\omega) = \frac{\omega_p^2 \tau \varepsilon_0}{(1-i\omega\tau)}$$

$$\frac{1}{\omega}$$

$$\sigma(\omega << 1/\tau) = \omega_p^2 \tau \varepsilon_0 \sim const.$$
Superconductor has energy gap, but below
gap frequency, have only superfluid response
$$\sigma(\omega >> 1/\tau) = i \frac{\omega_p^2 \varepsilon_0}{\omega} \sim i/\omega$$

$$0.50$$

$$\frac{0.50}{NbTi thin film}$$
Normal state
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin film
$$\sigma(\omega << 1/\tau) = \frac{\omega_p^2 \tau \varepsilon_0}{\omega} \sim i/\omega$$
NbTi thin fil

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

"Low" Energy Electrodynamics in a Superconductor

What is supercurrent response to \sim 1ps intense E-field transient? (T<<T_C, ω < ω _g)

• Low frequency response is dominated by imaginary part of conductivity $\sigma_2 \cong A/\omega$; $A \cong \sigma_n \omega_g$ (purely inductive).

$$L\frac{dI}{dt} = V \qquad I(t) = \frac{1}{L} \int_{-\infty}^{t} V(t') dt'$$

• $J \cong \sigma_n \omega_g \int_{-\infty}^{t} E(t') dt'$

NATIONAL SYNCHROTRON LIGHT SOURCE BROOKHAVEN NATIONAL LABORATORY

Proposed Experiment: Time-dependent Supercurrent

Typical superconductor has $J_c \sim 10^8 \text{ A/cm}^2$. What happens if J_c is exceeded? => "over twist" the local superconducting phase, spin off vortices? How quickly can a vortex be created? How does dissipation initially appear?

Need an analytical method for <u>time-dependent</u> propagation through film.

NATIONAL SYNCHROTRON LIGHT SOURCE BROOKHAVEN NATIONAL LABORATORY

Model Calculation: FDTD Technique

• FDTD starts with discrete formulation of Maxwell's equations. (K. Yee - '66)

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} \qquad \nabla \times \vec{E} = \frac{\partial \vec{B}}{\partial t}$$

• Dielectric response included through displacement in normal fashion

$$\vec{D}(t) = \varepsilon_{\infty}\varepsilon_{0}\vec{E}(t) + \varepsilon_{0}\int_{0}^{t}\vec{E}(t-\tau)\chi(\tau)d\tau$$

- Solve numerically
 - Provides accurate description of THz propagation across dielectric boundaries.
 - Recursive convolution method for materials where loss is described by exponential damping (e.g., Lorentzian) (Luebbers, Hunsberger and Kunz - '91).

$$\sigma(\omega) = \frac{\omega_p^2 \tau \varepsilon_0}{(1 - i\omega\tau)} \longrightarrow \chi(t) = \omega_p^2 \tau [1 - e^{-t/\tau}] \theta(\tau)$$

– Successfully used for time-resolved spectroscopy (where ω_p and/or τ are themselves time-dependent). (Beard and Schmuttenmaer - '01)

FDTD Test / Demonstration

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

FDTD demonstration

superconducting film (at 1st interface)

2nd interface (back of substrate)

FDTD Calculation for Transmission

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

U.S. DEPARTMENT OF ENERGY OFFICE OF BASIC ENERGY <u>Sciences</u>

Model for Exceeding Critical Current

If induced J exceeds J_C, changeover to state with dissipation. How quickly?

Model as linear change (with time) of $1/\tau$, increasing from $1/\tau = 0$ THz and increasing to a final value of 2 THz.

Assume process takes 5 ps to complete

=> Expect non-linear effects.

NATIONAL SYNCHROTRON LIGHT SOURCE Brookhaven National Laboratory

Summary

Accelerator-based THz Sources produce Coherent Pulses:

- > High pulse energy
- > 1/2 or single cycle pulses, ~ 1 ps or less
- > E-field ~ 1 MV/cm, H-field ~ 3kG
 - should be sufficient to drive supercurrents in excess of critical value.
- > high repetition rate from SC linac (JLab energy recovery linac) or storage ring (less charge per bunch and control of shape, but more stable?)

NSLS Source Development Lab (SDL):

- 80 µJ pulse energy demonstrated
- spectral content to 2 THz (anticipate even higher)
- demonstrated coherent EO detection
- transition radiation: radial polarization (suitable for coupling to wires or other cylindrical modes)
- Potential for 2nd color (pump or probe)
- Not presently a "User Facility", but potential exists with sufficient interest.

