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� Electromagnetic Radiation (in the far IR) from Relativistic Electrons

� Requirements for Coherent (THz) Radiation Emission: Short Electron Bunches

� High Energy Coherent THz Pulses from the NSLS / SDL Linac

� Electro-optic Detection: E-field Strengths Approaching 1 MV/cm

� Potential Application:  Transient Supercurrents in Thin Film Superconductors

� Summary

Outline
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Modeled using Radiation2D code
Tsumoru Shintake  RIKEN / Spring-8

Radiation from a Non-relativistic Electron

Radiated field for a brief lateral displacement
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Coherent THz Pulses: Photoconductive Switch Method

• Radiation from acceleration of photocarriers in a semiconductor.

106 V/m =>     ~ 1019 cm/s2a
Energy = 6x10-32 J per electron in 1 ps

THz pulseSub-picosecond
laser pulse

Si or
GaAs γ =1 (non-relativistic)
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or dE/dν ~ 10-32 J/cm-1/electron
D. Auston et al

D. Grischkowsky et al
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Radiation from a Relativistic Electron

Non-relativistic Coulomb Field Relativistic (3 MeV) Coulomb Field
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Radiation from a Relativistic Electron

Dipole bend
(linearly polarized)

Transition
(radially polarized)

Calculated using
Radiation2D code
Tsumoru Shintake
RIKEN / Spring-8



U.S. DEPARTMENT OF ENERGY

OFFICE OF BASIC ENERGY SCIENCES

N A T I O N A L  S Y N C H R O T R O N  L I G H T  S O U R C E

B R O O K H A V E N  N A T I O N A L  L A B O R A T O R Y

Characteristics of (conventional) Synchrotron Radiation

Bending magnet radiation 
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Approximate Source Comparison - Radiated Energy per Electron

Transition radiation

e

conductor

θ ∼1/γ

Bending magnet radiation 

e

θ ~ (λ/ρ)1/3

25102 −×≈
νd

dE J/cm-1/electron

NOTE: emitted energy, per electron, is 7 orders of magnitude greater than non-relativistic case.

Photoconductive switch

3210−≈
νd

dE J/cm-1/electron

25105 −×≈
νd

dE J/cm-1/electron
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Multi-particle Coherent Synchrotron Radiation (CSR)
Accelerators typically have many electrons traveling in a “bunch”.  Can emission be coherent?

Yes -- if bunch (or some portion of it) has length that is short compared to wavelength.

S(r)

r

bunch density λ << lb
E~ N1/2; I ~ N

λ >> lb; 
E ~ N; I ~ N2
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⋅= drrSef crni rωωwhere (Nodvick & Saxon)

In some accelerators, bunch lengths are 100s of fs (=>THz), and N can be large e.g. ~ 1010 
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Making Short Bunches
� Electrons have charge(!) => Coulomb repulsion

– Coulomb interaction causes spread in the energy distribution of a bunch.
– For a non-relativistic electron, energy spread => velocity spread => distance spread.
– BUT:  For highly relativistic electrons, velocity spread  remains small (mass varies).

=> Start with long bunch, accelerate to high energy, then compress.
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Direction of travel
on crest (standard)

off crest (energy chirp)

Compression method analogous to light, magnets serve as dispersive electron optics.

Dipole chicane to compress chirped bunch
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� Jefferson Lab Energy Recovery Linac (high repetition rate)

� Storage Ring Coherent Synchrotron Radiation

Aside:  Other Coherent THz Sources
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“Self” Compression in a Synchrotron Storage Ring
� An initially short electron bunch emitting Synchrotron Radiation develops a small energy

chirp (electrons at front re-absorb SR emitted from the electrons behind).
� Adjust storage ring dispersion so that bunch slowly compresses over many orbits.
� New equilibrium bunch shape with “sharp” structure => Coherent THz Radiation

Requires ring with high RF frequency to develop stable output
– Unstable/bursting:  NSLS VUV (53 MHz), NIST, MAX, ….
– Stable:  BESSY II  (500 MHz), ANKA (500 MHz)   (detailed analysis:  Byrd, Sannibale et al - Berkeley)
– CIRCE (proposed at Berkeley) (500 MHz to 1.5 GHz)
– MIT Bates (3 GHz, not yet tested)
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The NSLS Source Development Lab Linac

� Coherent output to over 1 THz.  Potential for shorter bunches with less charge.

� Low rep. rate (1 to 10 Hz)

photocathode
e- gun

dipole chicane
compressor

~300 fs ~200MeV
electron bunches

THz

THz

~ 150 fs Ti:S oscillator,
amplifier, harmonic gen.

800 nm 150 fs pulses

266 nm
4 ps~ 4 ps

“mono”
~ 4 ps 
chirped

off-crest
section

~ 300 fs 

� Photocathode gun produces ~ 0.7nC (4.4x109 electrons) per “shot”

X.-J. Wang et al
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Basic Pulse Characteristics

�  80 µJ in a single pulse

� Consistent with prediction
based on coherent
transition radiation
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Electro-Optic THz Radiation Setup

CCD

ZnTe AnalyzerPolarizer

Lens

Electron Beam

Vacuum Window

Paraboloid

Synchronized
Ti:Sapphire Laser Coupling Hole, 2 mm λ/4

EO Detection method:
T.F. Heinz/Columbia & X.-C. Zhang/Rensselaer 

Accelerators: 
Yan, Van der Meer et al PRL 2000
Wilke et al PRL 2002
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Signal and Reference

OAPOAP ZnTeZnTe

BSBS

λλλλ/4λλλλ/4 Pol.Pol.
RefRef

SignalSignal

CameraCamera
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Image Processing for Field Measurement
– First, turn down intensity to get “on-scale” for 500 µm thick ZnTe

(reduce charge, less compression)
– Reference IR (left image) and Signal IS (right image) obtained simultaneously (for each linac

pulse).
– Images scaled to match and normalize both.
– Calculate asymmetry A of Signal, subtract pattern w/o THz.

A = 2IS/IR - 1
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Temporal E-Field Cross Section at Focus

Measurement

Calculation

E-field along horizontal plane
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� Expand in Gauss-
Laguerre modes and
propagate to focus.

� Focus spot size
3 mm diameter.

� Single period
oscillation.

� 300 fs rms length

� Electric field strength
~ 300 kV/cm at 300
pC charge.

Calculated Focus Distribution of THz
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Studies using High-Field, Half-Cycle THz Pulses
A 100 µJ, half-cycle THz pulse, focused into a volume of 1 mm3.

– E-field = [2DE
/ε0]1/2 ~ 108 V/m (~ 1 MV/cm).

– => Use large electric field to displace atoms in polar solids (structural
phase transitions, soft modes, ferroelectricity, …), induce large
transient currents.

– H-field = E/c ~ 0.3 T

– => Use transient magnetic field to create magnetic/spin excitations and
follow dynamics on ps time scale (e.g., time-resolved MOKE).

Or some other shape pulse? (R&D activity to control density modulation)
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How would a superconductor respond to one of these intense pulses?
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THz Transmission through a Superconducting Film
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Transmission through thin conducting film (thickness d on substrate with refractive index n)

( ) 21 σσωσ i+=where

Drude model for optical response

 … assume in dirty limit for Normal state

Superconductor has energy gap, but below
gap frequency, have only superfluid response

NbTi thin film
on sapphire
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“Low” Energy Electrodynamics in a Superconductor
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What is supercurrent response to
~ 1ps intense E-field transient?
(T<<TC, ω< ω g)

• Low frequency response is
dominated by imaginary part of

conductivity σ2 ≅ A/ω ; A ≅ σnωg

(purely inductive).

•

α-MoGe film on sapphire

H. Tashiro, D.B. Tanner et al
U. Florida
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Proposed Experiment: Time-dependent Supercurrent
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Typical superconductor has JC ~ 108 A/cm2.  What happens if Jc is exceeded?
=> “over twist” the local superconducting phase, spin off vortices?
How quickly can a vortex be created?  How does dissipation initially appear?

Need an analytical method for time-dependent propagation through film.
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Model Calculation: FDTD Technique

� FDTD starts with discrete formulation of Maxwell’s equations.  (K. Yee - ‘66)

� Dielectric response included through displacement in normal fashion

� Solve numerically
– Provides accurate description of THz propagation across dielectric boundaries.
– Recursive convolution method for materials where loss is described by exponential damping

(e.g., Lorentzian)   (Luebbers, Hunsberger and Kunz - ‘91).

– Successfully used for time-resolved spectroscopy (where ωp and/or τ are themselves time-
dependent).  (Beard and Schmuttenmaer - ‘01)
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FDTD Test / Demonstration
Thin metal film on a
100 µm thick, n=2 substrate

Normal

Superconducting

space inc. = 10 µm
time inc.   = 16.8 fs
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distance

tim
e

2nd interface (back of substrate)

superconducting film (at 1st interface)

FDTD demonstration
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FDTD Calculation for Transmission
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Model for Exceeding Critical Current
If induced J exceeds JC,
changeover to state with
dissipation.  How quickly?

Model as linear change

(with time) of 1/τ, increasing

from 1/τ = 0 THz and increasing
to a final value of 2 THz.

Assume process takes 5 ps to
complete

=> Expect non-linear effects.
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Summary
Accelerator-based THz Sources produce Coherent Pulses:

> High pulse energy

> 1/2 or single cycle pulses, ~ 1 ps or less

> E-field ~ 1 MV/cm, H-field ~ 3kG

– should be sufficient to drive supercurrents in excess of critical value.

> high repetition rate from SC linac (JLab energy recovery linac)
or storage ring (less charge per bunch and control of shape, but more stable?)

NSLS Source Development Lab (SDL):
• 80 µJ  pulse energy demonstrated

• spectral content to 2 THz (anticipate even higher)

• demonstrated coherent EO detection

• transition radiation: radial polarization
(suitable for coupling to wires or other cylindrical modes)

• Potential for 2nd color (pump or probe)

• Not presently a “User Facility”, but potential exists with sufficient interest.


