

PIONEERS IN COLLABORATIVE RESEARCH®

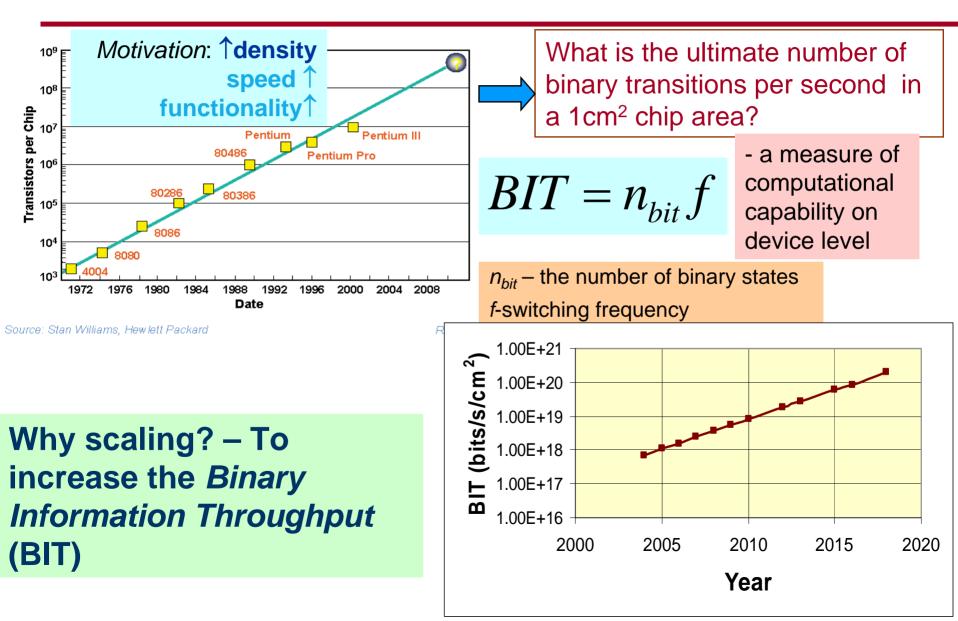
The Search for New Information Processing Technologies

Ralph Cavin and Victor Zhirnov

Semiconductor Research Corporation

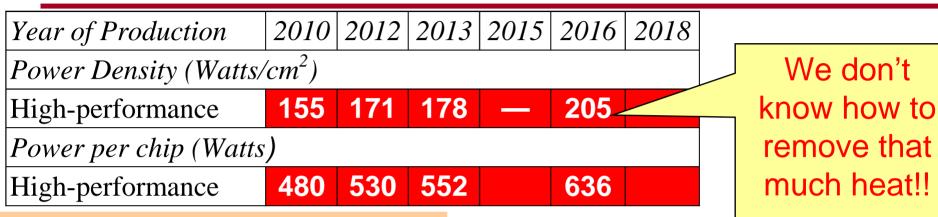
American Physical Society March Meeting 2005

March 22, 2005


International Technology Roadmap for Semiconductors (ITRS)

- A very detailed industrial perspective on the future requirements for nanoscale electronic technologies
 - Goal is to continue exponential gains in performance/price for the next fifteen years
 - Built on worldwide consensus of leading industrial, government, and academic technologists
- Provides guidance for the semiconductor industry and for academic research worldwide
- Content is Technology requirements and Potential Solutions
- Projects that by 2018, half-pitch spacing of metal lines for MPU will be 18 nanometers and MOSFET device gate lengths will be 7 nanometers

Moore's Law: Transistors per chip


ITRS CMOS Scaling Challenges – High-performance Logic Technology Requirements

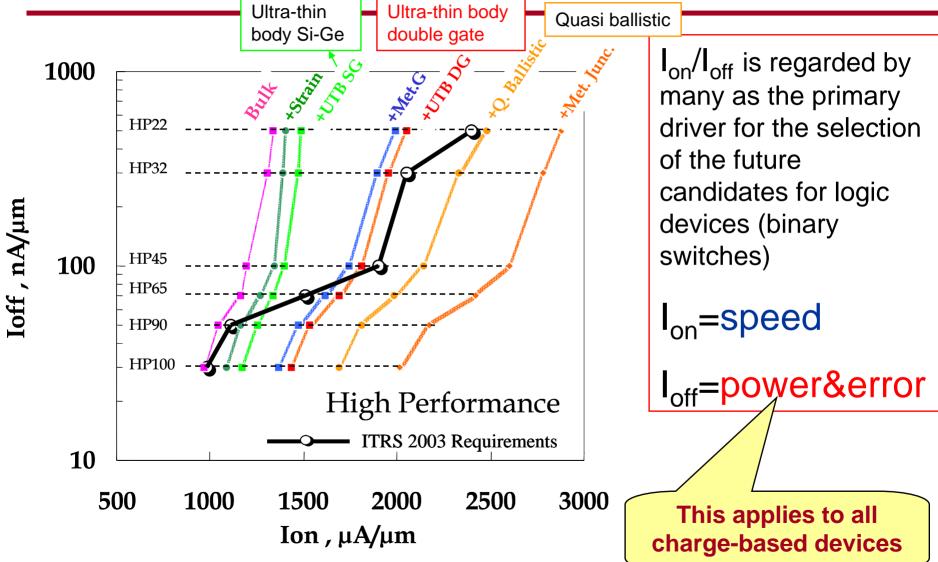
Year of Production	2010	2012	2013	2015	2016	2018	
Technology Node	hp45		hp32		hp22		
MPU Physical Gate Length (nm)	18	14	13	10	9	7	
Nominal gate leakage current density limit (at 25°C) (A/cm ²)	1.9E+03	2.4E+03	7.7E+03	1.0E+04	1.9E+04	2.4E+04	I _{OFF}
Nominal power supply voltage (V_{dd}) (V)	1.0	0.9	0.9	0.8	0.8	0.7	
Nominal high-performance NMOS sub-threshold leakage current, I _{sd,leak} (at 25°C) (mA/µm)	0.1	0.1	0.3	0.3	0.5	0.5	I _{OFF}
Nominal high-performance NMOS drive current, I _{d,sat} (at V _{dd} , at 25°C) (mA/µm)	1900	1790	2050	2110	2400	2190	I _{ON}
High-performance NMOS intrinsic delay, $\tau = C_{gate} * V_{dd} / I_{d,sat}$ (ps)	0.39	0.30	0.26	0.18	0.15	0.11	I _{ON}
NMOSFET static power dissipation due to drain and gate leakage (W/µm)	1.10E-06	9.90E-07	2.97E-06	2.64E-06	4.40E-06	3.85E-06	I _{OFF}

Energy Costs of Computation: Energy Consumed and Heat generated

Since each binary transition requires energy E_{bit} , the total power dissipation growth is in proportional to the information throughput:

$$P = \frac{n_{bit}}{t_{sw}} \cdot E_{bit} = BIT \cdot E_{bit}$$
A universal relation for information processing devices

Two trivial solutions:


reduce E_{bit} (operation voltage)

 V_{min}>k_BTIn2=17 mV (signal-to-noise ratio/distinguishability)

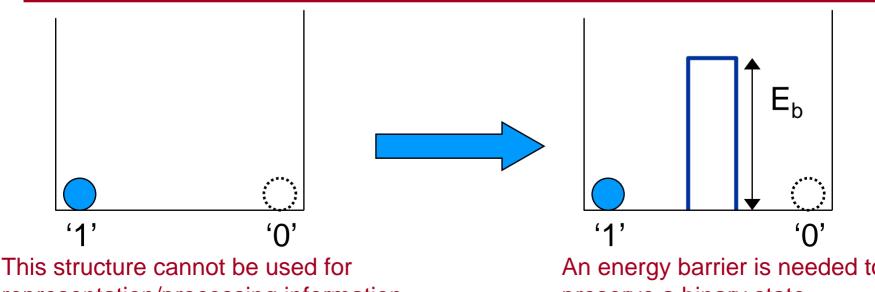
 reduce number of binary transitions, e.g. by decreasing the activity factor of the transistors in an IC

 equivalent to stopping scaling

Technology Enhancements Image: Second Se

Calculations performed using MASTAR – ST Microelectronics – T. Skotnicki

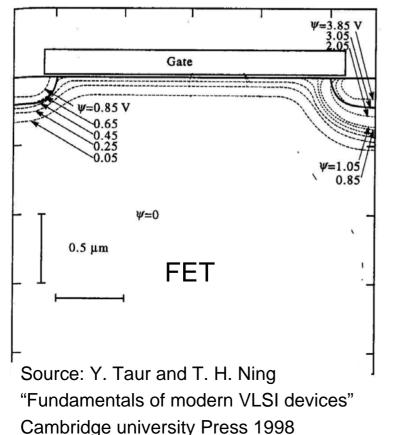
Emerging Research Logic Devices 2003 ITRS PIDS/ERD Chapter

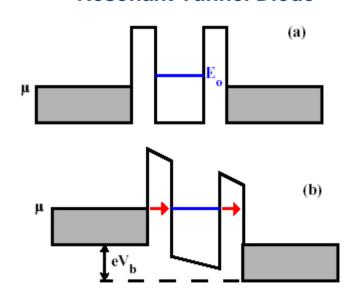

				× ×				
Device	FET	RSFQ	1D structures	Resonant Tunneling Devices	SET	Molecular	QCA	Spin transistor
Cell Size	100 nm	0.3 µm	100 nm	100 nm	40 nm	Not known	60 nm	100 nm
$Density (cm^{-2})$	3E9	1E6	3E9	3E9	6E10	1E12	3E10	3E9
Switch Speed	700 GH z	1.2 THz	Not known	1 THz	1 GHz	Not known	30 MHz	700 GHz
Circuit Speed	30 GHz	250– 800 GHz	30 GHz	30 GHz	1 GHz	<1 MHz	1 MHz	30 GHz
Switching Energy, J	2×10 ⁻¹⁸	>1.4×10 ⁻¹⁷	2×10^{-18}	>2×10 ⁻¹⁸	>1.5×10 ⁻¹⁷	1.3×10^{-16}	>1×10 ⁻¹⁸	2×10 ⁻¹⁸
Binary Throughput, GBit/ns/cm ²	86	0.4	86	86	10	N/A	0.06	86

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS

PIONEERS IN COLLABORATIVE RESEARCH

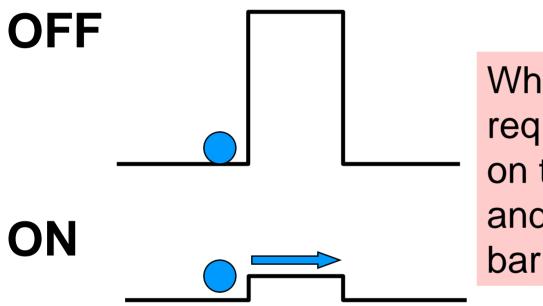
Energy Barriers in Electronic Devices (FAST SWITCH PROBLEM)


representation/processing information


An energy barrier is needed to preserve a binary state

Energy Barriers in Materials

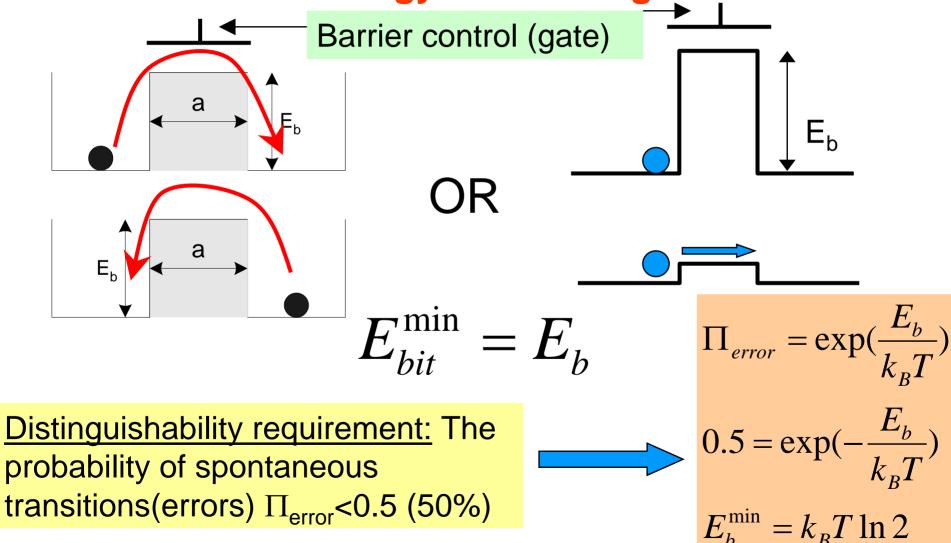
• Any electronic device contains at least one energy barrier, which controls electron flow. The barrier properties, such as height, length, and shape determine the characteristics of electronic devices.



Resonant Tunnel Diode

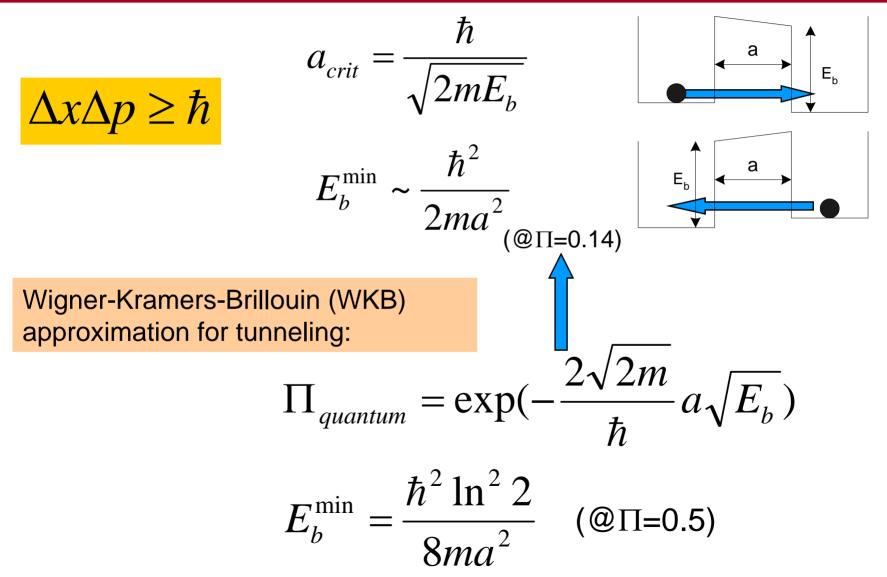
R. Compano (Ed.) **Technology Roadmap for Nanoelectronics** (European Communities, 2001)

Arbitrary Electronic Device



What are the requirements/limitations on the height, width and shape of the barrier?

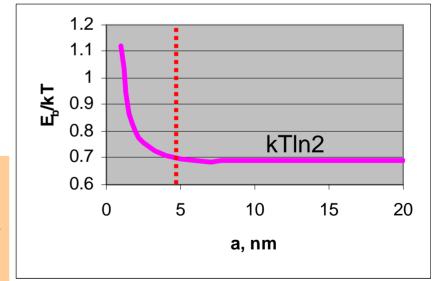
Classic Distinguishability: The Boltzman constraint



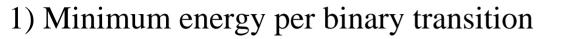
How small the energy barrier height could be ?

Quantum Distinguishability: The Heisenberg Constraint

Total Distinguishability @ **Π**=0.5



$$\Pi_{error} = \Pi_{classic} + \Pi_{quantum} - \Pi_{classic} \Pi_{quantum} =$$


$$= \exp(-\frac{E_b}{kT}) + \exp(-\frac{2\sqrt{2m}}{\hbar}a\sqrt{E_b}) - \exp(-\frac{\hbar E_b + 2akT\sqrt{2mE_b}}{\hbar kT})$$

Generalized expression for the minimum energy barrier to create a bit

$$E_b^{\min} \approx kT \ln 2 + \frac{\hbar^2 (\ln 2)^2}{8ma^2}$$

What does fundamental physics have to say about electron transport limits?

$$E_{bit}^{\min} = k_B T \ln 2$$

2) Minimum distance between two distinguishable states (Heisenberg)

$$\Delta x \Delta p \ge \hbar \implies x_{\min} = a = \frac{\hbar}{\sqrt{2mkT \ln 2}} = 1.5nm(300K)$$

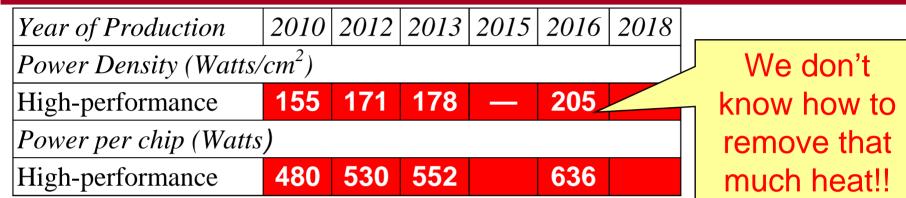
3) Minimum state switching time (Heisenberg)

$$\Delta E \Delta t \ge \hbar \implies t_{st} = \frac{\hbar}{kT \ln 2} = 4 \times 10^{-14} \, s(300K)$$

4) Maximum gate density

$$n = \frac{1}{x_{\min}^2} = 4.6 \times 10^{13} \, \frac{gate}{cm^2}$$

Total Power Dissipation (@ E_{bit} = kTln(2))


$$P_{chip} = \frac{n \cdot E_{bit}}{t} = 4.6 \cdot 10^{13} [cm^{-2}] \cdot \frac{3 \cdot 10^{-21} [J]}{4 \cdot 10^{-14} [s]}$$

$$E_{bit} = k_B T \ln 2 \approx 3 \cdot 10^{-21} J$$

$$P_{chip} = 4.74 \times 10^6 \frac{W}{cm^2}$$
 T=300 K

The circuit would vaporize when it is turned on!

How much heat a solid system can tolerate?...

Several hundred W/cm² is close to known limits of heat removal from a 2-dimensional solid material structure with $T_{max} = 125^{\circ}C$

Experimental demonstrations of on-Si cooling systems (without active devices):

680 W/cm² thermoelectric (Zheng et al.)

790 W/cm² microchannel (Tuckerman and Pease)

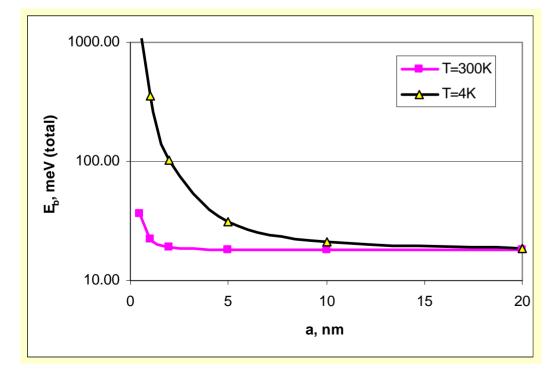
What are the fundamental limits for heat removal?

PIONEERS IN COLLABORATIVE RESEARCH®

Should we consider cryogenic devices as an option for the mainstream applications?

Three fundamentals of heat removal:

1) The Newton's Law of Cooling: $q=h(T_h-T_a)$


(h-heat transfer coefficient)

2) The Ambient: $\underline{\mathbf{T}_{a}}=300 \text{ K}$!!! 3) The Carnot's theorem: Work to be done $W_{cool} = \frac{T_{a} - T_{c}}{T_{c}} Q^{-}$ Heat to be removed

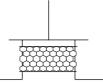
Cryogenic Computation with Nanodevices

$$E_{bit}^{total} = E_{bit} + \frac{T_a - T_{dev}}{T_{dev}} E_{bit} = \frac{T_a}{T_{dev}} E_{bit} = \frac{T_a}{T_{dev}} \left[k_B T_{dev} \ln 2 + \frac{\hbar^2 (\ln 2)^2}{8ma^2} \right]$$
$$E_{bit}^{total} = k_B T_a \ln 2 + \frac{T_a}{T_{dev}} \frac{\hbar^2 (\ln 2)^2}{8ma^2} > k_B T_a \ln 2$$

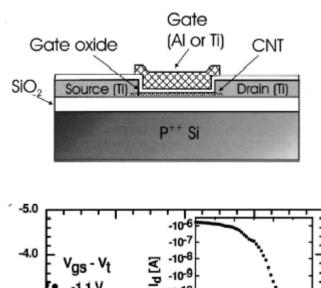
Due to tunneling, the power consumed by the device depends on both operating temperature and size that manifests itself with unexpectedly dramatic increases in total power consumption at cryogenic temperatures.

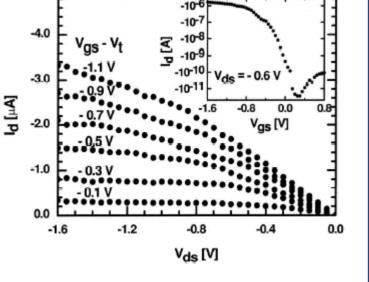
Asymptotically Dissipation-less Computing?

- Often referred as to "reversible" or "adiabatic" computing...
- We aren't optimistic about Reversible or Adiabatic Computing:
- Reversible Computing requires isolation from external environment
 - Cooling to very low temperature is very costly in terms of energy
- "Adiabatic" methods attempt to save and re-use
 - All proposed methods are inefficient
 - Require slow device operation for which there is limited interest



PIONEERS IN COLLABORATIVE RESEARCH®


Some Current Ideas for Future Logic Devices


CNT and Nanowire transistor Resonant tunneling devices Single electron transistor Molecular transistor Spintronics

CNT transistor

S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and Ph. Avouris, Appl. Phys. Lett 80 (2002) 3817

Questions for CNT FETs

1) Can CNT FET be smaller, faster and dissipate less energy than Si FET?

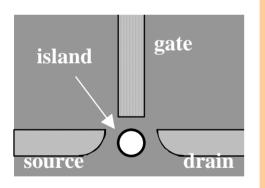
2) Is it possibilities to integrate individual
 CNT components in a complex circuit
 (billions of components per cm²)?

3) Is Ballistic Transport a big advantage?

$$\gamma_{drift} = \mu \cdot F$$

$$j = e \cdot n \cdot v \qquad n_{\text{drift}} > n_{\text{bal}}$$

$$v_b = \left(\frac{e}{m}t\right) \cdot F$$


For long channels, is ballistic transport possible in the high-current regime?

Single electron transistor

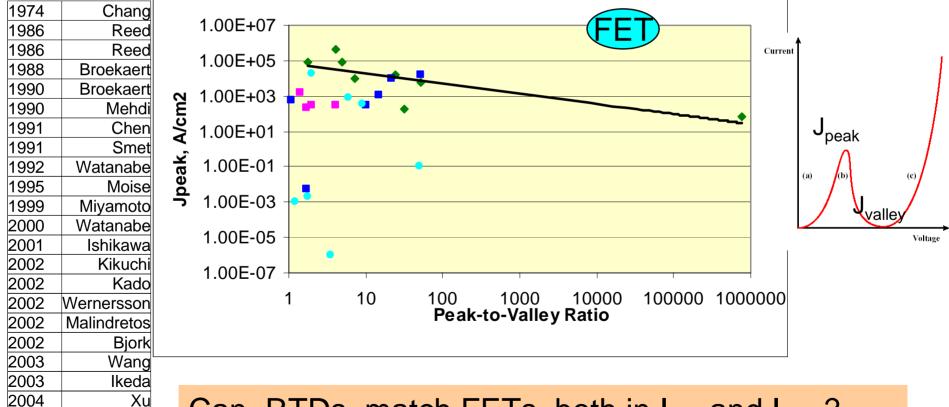
Single electron transistor (SET) Electron movements are controlled with single electron precision

Tunneling and Coulomb blockade

Single-Electron Transistor has all problems of charge-based devices

The Fan-Out requirement is not satisfied?

High error rate?


Low speed?

What about FET in single-electron mode? (FET will be 32-electron transistor by 2018)

Resonant tunneling devices(diodes and transistors)

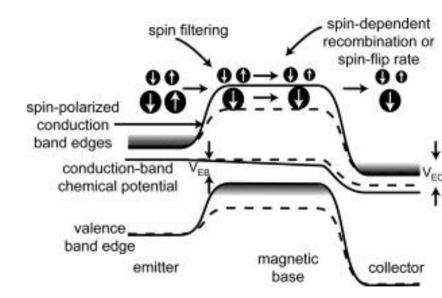


This year (2004) marks the 30 years of experimental studies of resonant tunneling structures (CHANG LL, ESAKI L, TSU R / IBM, "RESONANT TUNNELING IN SEMICONDUCTOR DOUBLE BARRIERS", APPL. PHYS. LETT 24 (12): 593-595 1974)

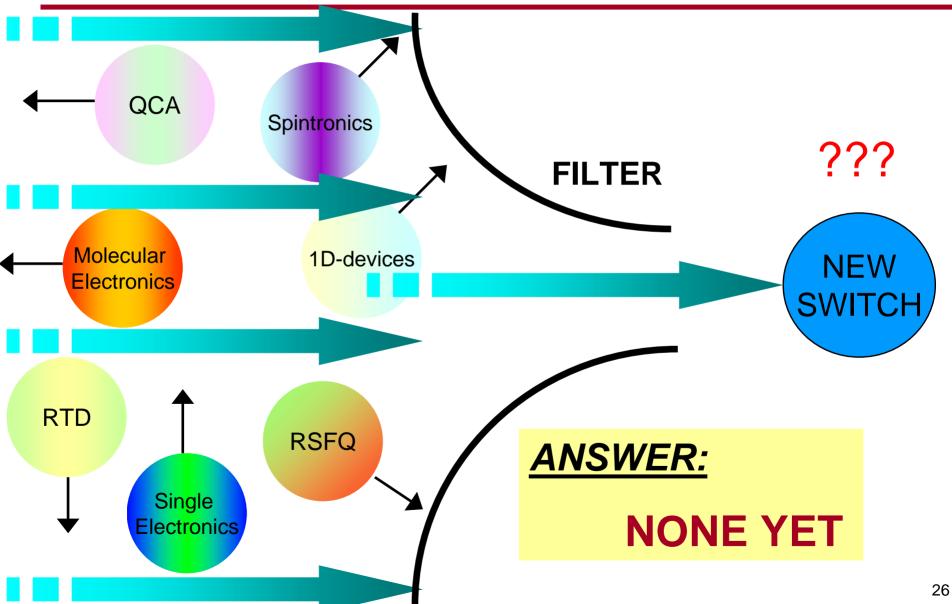
Can RTDs match FETs both in I_{ON} and I_{OFF} ?

Molecular transistor

- Molecular Transistor has all problems of charge-based devices
- Question: Can molecular transistor be smaller, faster and dissipate less energy than Si FET?
- Many fundamental issues in integration and fabrication


Spin transistors: Spin Transport vs. Charge Transport?

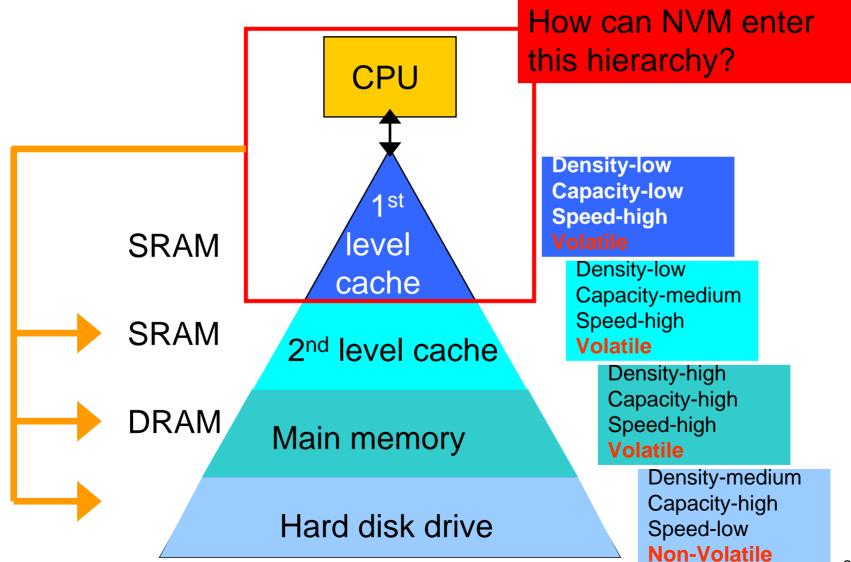
- Spin is a property of material particles (e.g. electron, proton etc.)
- To move spin from point A to point B requires moving material particle
- Question: Even if we are controlling spin we are still moving electrons. Don't we have the same problems as with charge-based devices?


Examples of proposed Spin transistors:

- Johnson tranistor
- Miziushima FIFS transistor
- SPICE transistor
- Ounadjela-Hehn transistor
- Datta-Das transistor...
- Operation principle: control of spinpolarized flow of electrons
 - Spin-valve (GMR)
 - Magnetic tunnel junction
 - Spin Transport in 2DEG

Flatte ME, Yu ZG, Johnston-Halperin E, et al. Theory of semiconductor magnetic bipolar transistors, APPL. PHYS. LETT. 82 (2003) 4740

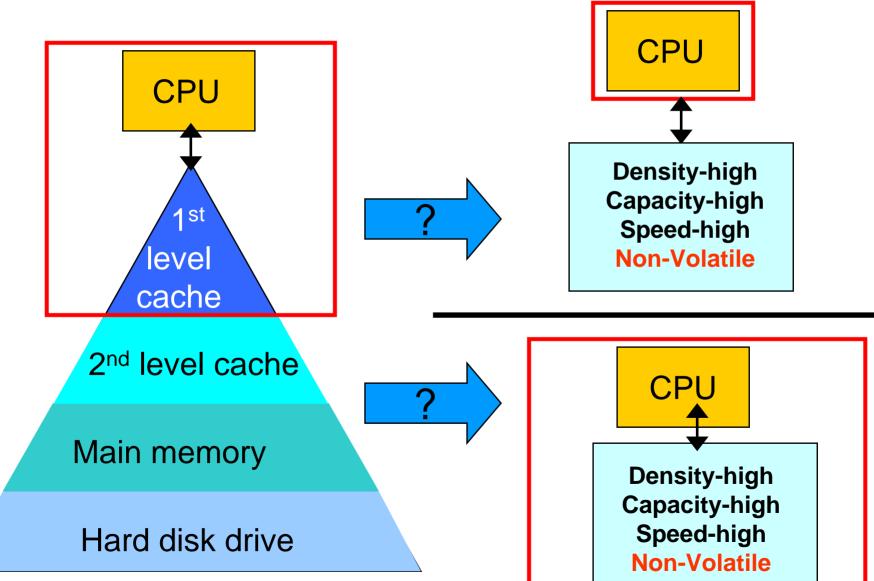
Which of current nanoelectronic concepts will become the NEW SWITCH?


PIONEERS IN COLLABORATIVE RESEARCH®

What else could be done? Emerging Memory Devices

Invent high speed, high density, electrically accessible, non-volatile memory!

Memory and Logic in a typical computer system

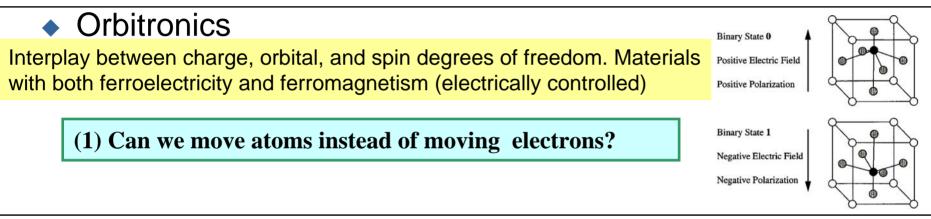

Memory limits computer's performance

- Overall computer's ability to execute programs are limited by interaction between MPU and memory
- This problem is not automatically solved by scaling
- Evolutionary Solution: SRAM occupies increasing amount of floorspace of MPU chip – Less room for LOGIC
 - Decrease the net information throughput
- Volatility of semiconductor memory requires external storage media with slow access (magnetic hard drives, optical CD)
- Invention of <u>electrically accessible</u> <u>non-volatile</u> memory with <u>high speed</u> and <u>high density</u> would imply a revolution in computer architectures

New Memory Hierarchy ?

Emerging Research Memory Devices 2003 ITRS PIDS/ERD Chapter

Storage Mechanism	Present Day Baseline Technologies		Phase Change Memory*	Floating Body DRAM	Nano- floating Gate Memory**	Single/Few Electron Memories* *	Insulator Resistance Change Memory ^{**}	Molecular Memories**
						╢╬╫		
Device Types	DRAM	NOR Flash	OUM	1TDRAM eDRAM	Engineered tunnel barrier or nanocrystal	SET	MIM oxides	Bi-stable switch Molecular NEMS
Availability	2004	2004	~2006	~2006	~2006	>2007	~2010	>2010
Cell Elements	1T1C	1T	1T1R	1T	1T	1T	1T1R	1T1R


Several Emerging Memory Technologies Show Promise

What Else Could be Done? – Explore new approaches

"Different" spintronics

(1) Can we make spin devices that operate without moving electrons?(2) Non-equilibrium operation of binary switch?

Phononics: thermal breakthrough

- (1) How can we better remove heat and what are the fundamental limits of heat removal?
- (2) How can we isolate selected materials subsystems from thermal noise?
- (3) Are there ways to control phonon movement by external stimuli.

Co-design of electric and thermal circuits?

 Invent <u>high speed</u>, <u>high density</u>, <u>electrically accessible</u>, <u>non-volatile</u> memory.