Hydrogen Storage in Metal-N-H Complexes

Ping CHEN, Zhitao XIONG, Guotao WU, Jianjiang HU Physics Department, Science Faculty

Contents

- I. Binary Metal-N-H systems
- II. Li-Ca-N-H system
- III. Li-Mg-N-H system
- **IV.** Other systems
- V. Summary
- **VI.** Challenges in the practical applications
- **VII.** Perspectives
- VIII. Acknowledgement

Systems under Investigations

TPR & TPD of Li3N sample

 $Li_3N + 2H_2 \leftrightarrow Li_2NH + LiH + H_2 \leftrightarrow LiNH_2 + 2LiH$

-- Chen P, Xiong ZT, Tan KL et al, Nature 2002, 420, 302-304

P-C-T Curves of Li-N-H

-- Chen P, Xiong ZT, Tan KL et al, Nature 2002, 420, 302-304

TPR & TPD of Ca2NH sample

-- Xiong ZT, Chen P, Tan KL et al, J. Mater. Chem. 2003, 13, 1767

6

I. Binary Systems

P-C-T curves of Ca2NH

-- Chen P, Xiong ZT, Tan KL et al, Nature 2002, 420, 302-304

7

Reactions

Material	Reaction	Capacity	Temperature
Li3N	$Li_{3}N + 2H_2 - Li_{3}N + 2Li_{4}H_2$	11.4wt%	323-673K
Li2NH	Li2NH + H2 – LiNH2 + LiH	7.0wt%	323-673K
Ca2NH	Ca2NH + H2 - CaNH + CaH2	2.1wt%	723-973K

-- Chen P, Xiong ZT, Tan KL et al, Nature 2002, 420, 302-304

Thermodynamic parameters – van't Hoff plot

Tuning the Thermodynamic Parameters

ΔΗ

 $M-N-H_{n+2} \leftrightarrow M-N-H_n + H_2$

 $\Delta G^{0} = -RTlnK_{p} = RTlnP_{H2}$ $\Delta G^{0} = \Delta H^{0} - T \Delta S^{0}$

 $\Delta S \cong S_{H2}$

Products

At $P_{H2} = 1.0$ bar, $\Delta G^0 = 0$, thus, T = $\Delta H^0 / S_{H2}$

<u>ΔH – determine the reaction</u> <u>temperature</u>

Mechanism – Interaction between <u>amide & hydrides</u>

H atoms attached to N normally possess positive charges, however, H in ionic hydrides have negative one. <u>The strong chemical potential for the combination of H⁺ and H⁻ is one of the important driving forces!</u>

$$Ca-N+H+H-Ca-H \longrightarrow Ca2NH + H2$$

By changing amide or hydride, new reactions and new materials may be discovered.

<u>Li-based ternary imide I – Li-Ca-N-H</u>

$2LiNH_2 + CaH_2 \rightarrow Li_2CaN_2H_n + (6-n)/2 H_2$

Hydrogen desorption occurs at lower temperature for the ternary system.

-- Xiong ZT, Wu GT, Hu JJ, Chen P, Adv Mater, 2004, 16, 1522-1525

<u>Li-Ca-N-H</u> – P-C-T curve at 220°C

Less than 2 hydrogen atoms can be reversibly stored by one ternary complex of Li-Ca-N-H, which is ~ 2.0 wt% of the starting material.

-- Xiong ZT, Wu GT, Hu JJ, Chen P, Adv Mater, 2004, 16, 1522-1525

II. Ternary Systems Li-Ca-N-H

APS March Meeting-2005

<u>Li-based ternary imides II – Li-Mg-N-H</u>

$Mg(NH_2)_2 + 2LiH \rightarrow Li_2MgN_2H_2 + 2H_2 \qquad 5.55wt\%$

Hydrogen desorption profiles of Li-Mg-N-H and Li₂NH. Drastic temperature decrease in hydrogen desorption was achieved in ternary systems.

-- Xiong ZT, Wu GT, Hu JJ, Chen P, Adv Mater, 2004, 16, 1522-1525

Volumetric Release & Soak

-- Xiong ZT, Hu JJ, Wu GT, Chen P, Luo W, Gross K, Wang J, J Alloy Comp, in press 16

<u>Li-Mg-N-H</u> – P-C-T at 180°C

P-C-T measurement shows ~ 5.5wt% of storage achieved at temperature around 180°C or below. The desorption pressure is pretty high, i. e., at 180°C, the plateau pressure is above 20 bars.

Certain hysteresis exists.

-- Xiong ZT, Wu GT, Hu JJ, Chen P, Adv Mater, 2004, 16, 1522-1525

17

III. Ternary Systems Li-Mg-N-H

Li-Mg-N-H - Thermodynamic Analysis

Van't Hoff plot

Theoretically, hydrogen desorption equilibrium pressure at 90°C is 1.0 bar, close to the PEM fuel Cell operation temperature.

-- Xiong ZT, Hu JJ, Wu GT, Chen P, Luo W, Gross K, Wang J, J Alloy Comp, in press 18

Li-Mg-N-H - Kinetic Analysis

Kissinger's plot $d[Ln(\beta/T_m^2)]/d(1/T_m) = - Ea/R$

Activation energy for hydrogen release form Mg(NH2)2+2LiH is: Ea =102kJ/mol-H2.

For the decomposition of Mg(NH2)2, it is ~ 130 kJ/mol

-- Xiong ZT, Hu JJ, Wu GT, Chen P, Luo W, Gross K, Wang J, J Alloy Comp, in press 19

Compositional Changes

$Mg(NH2)2 + n LiH \rightarrow Li-Mg-N-H + H2 \quad n = 1, 2, 3$

Decrease in LiH content will lead to the release of ammonia at temperature around 200°C.

Increase Li content further stabilizes N content in the complex and may also leads to the increase in total amount of H2 desorbed. However, part of the hydrogen could be only released at higher temperatures.

P-C-T Measurements – 220 °C

Clearly, Li-Mg-N-H with Li/Mg=2/1 gives more usable hydrogen at lower temperature than that of Li/Mg=3/1, wherein part of the hydrogen retains in the complex until higher temperatures.

Ammonia Control

- There are competing processes involved, i.e., Desorption of H2 and direct decomposition of NH containing compounds to NH3.
- Generally, desorption of H2 is favored at lower temperatures.
- To avoid ammonia, we can either lower down the operation temperature or increase hydride content in the reactant.

IV. Other Systems Mg-Na-N-H $Mg(NH_2)_2 + 2NaH \leftrightarrow Na_2MgN_2H_n + (6-n)/2H_2$ of Singapore Fast kinetics 100000-165°C 80000 Desorption in the temperature range of 80 - 200°C. 60000 TPD H2 Signal Absorption: Ambient 40000 temperature or above. 65°C 20000 TPA 0 20 40 60 80 160 180 200 140 0 100 120 Temperature (Degree C)

-- Xiong ZT, Hu JJ, Wu GT, Chen P,, J Alloy Comp, published on line

P-C-T and van't Hoff plot

In summary, reversible hydrogen storage has been confirmed in the following systems –

- A. Li_3N
- B. Li₂NH
- C. Ca₃N₂
- D. Ca₂NH
- E. Li-Mg-N-H with different molar ratio of Li/Mg/N
- F. Li-Ca-N-H with different molar ratio of Li/Ca/N
- G. Li-Al-N-H with molar ratio of Li/Al = 3/1
- H. Mg-Na-N-H with different molar ratio of Mg/Na/N
- I. Mg-Ca-N-H etc..

- Chemical Instability Competing chemical routes exist, exp. direct decomposition of reactants. Sensitive to moisture, CO₂, O₂ etc.
- Operation Temperature.
- Lifetime sample segregation, which induces the slow kinetics.
- Material Synthesis and storage.
- Thermodynamic data.

- Plenty systems for exploration : Nitride, Imide, Nitride hydrides etc., binary, ternary or Multinary.
- Huge room for optimization: Catalyst, Additive, Crystal dimension, Morphology etc..
- New Chemistry New chemicals, New reactions.

Acknowledgements

Financial Support

Agency of Science, Technology and Research (A*STAR), Singapore.

The New Energy and Industrial Technology Development Organization (NEDO, Japan)

Collaboration

Institute of Applied Energy (Japan)

Collaborators

Dr. Weifang Luo, Dr. Karl Gross, Dr. James Wang (SNL) Professor Gert Wolf (TU Bergakademie Freiberg)

References

- 1. P. Chen, Z. Xiong, et.al. Nature 420 (2002) 302
- 2. T. Ichikawa, S. Isobe, N. Hanada, H. Fujii, J Alloy Compd., 365 (2004) 271
- 3. Y. Hu, E. Ruckenstein, Ind Eng Chem Res 42 (2003) 5135
- 4. Z. Xiong, J. Hu, G. Wu, P. Chen Adv. Mater. 16 (2004) 1522.
- 5. W. Luo, J. Alloy. Compd. 381 (2004) 284.
- 6. H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujii, *J. Phys. Chem. B* 108 (2004) 8763.
- 7. Y. Nakamori and S. Orimo, J. Alloy. Compd. 370 (2004) 271-275.
- 8. Z. Xiong, J. Hu, G. Wu, P. Chen, J. Alloy. Compd, published on line.
- 9. Y. Nakamori, G. Kitahara, S. Orimo J. Power Source 138 (2004) 309.
- 10. P. Chen, J. Z. Luo, Z. T. Xiong, J. Y. Lin and K. L. Tan, *J. Phys. Chem.* 107 (2003) 10967.
- 11. T. Ichikawa, N. Hanada, S. Isobe, H. Leng, H. Fujii, *J. Phys Chem. B* 108 (2004) 7887.
- 12. F. Pinkerton, G. Meisner, M. Meyer, M. Balogh and M. Kundrat, J. Phys Chem B 109 (2005) 6.