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Transmission electron 
microscope (TEM) 

- Heated W, LaB6 or field emission 
source

- Electromagnetic lenses, giving 
direct imaging or diffraction using 
a parallel probe, or microanalysis 
using a focused probe

- Thin samples ( 10- 500 nm)
Hitachi HF2000 TEM

Imaging 
and 
diffraction!



Electrons as particles (200kV)

� Electrons travel at 0.7c (relativistic)
� Up to 1010 e/sec. Focused probe (field emission gun) can generate up to 

1nA into 1nm probe, or greater than 108 e/atom/sec
� An electron can transfer up to 44eV to a carbon atom in a head-on 

collision. This can generate point defects (bulk) and sputtering (surface)
� Less energetic collisions generate phonons, excitation of inner and outer 

shell electrons, plasmons and photons. This inelastic scattering gives 
microanalysis and imaging using a variety of signals

� Radiation damage can be a problem, with some organic materials 
damaging at down to 1 e/atom. Conversely there is potential for 
lithography and hole drilling



Inelastic scattering: some useful signals

Secondary 
electrons

Electron energy loss 
spectroscopy (EELS)

High angle annular dark field 
detection (HAADF)

X-rays (EDX)Cathodoluminescence



Electrons as waves: diffraction

λ = h/p (de Broglie) = 0.0025nm (200kV)

c.f. λ = 0.1 nm (X-rays), 500nm (light)

λ = 2dsinθ

Bragg�s Law

~ 5º



Spatial resolution

α
λ=d

Abbe criterion (α = convergence angle)

Light microscope: α ~ 1 rad, d ~ λ

TEM: α ~ 10-2 rad, d ~ 100λ (0.2nm!)

i.e. resolution is comparable to 
atom spacings, and α is 
comparable to the Bragg angle

d



Imaging modes

Bright field
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Dark field Lattice imaging
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The presence of aberrations requires that imaged beams must be as close as 
possible to the optic axis. Selection is by means of an objective aperture



Scattering theory
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Amplitude scattered into g (thin crystal limit): 

∆t = specimen thickness

Φ = amplitude

ξg = extinction distance

For electrons, ξg ~ 10 � 100 nm

For X-rays, ξg ~ 2-3 orders of magnitude greater



TEM: why so many reflections?
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Two-beam imaging

Fortunately, it is possible to 
orient a single crystal sample 
until only one diffracted 
beam is strong. 
Understanding diffraction is 
then a relatively simple two-
beam problem:

In general, electron 
diffraction is a many beam 
problem



Two-beam imaging: significance of �deviation parameter� s
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Large s is simple (kinematical): 

s = 0.2nm-1 s = 1.3nm-1s = 0
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Two-beam imaging: significance of �deviation parameter� s
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s = 0, ∆t = 1/s = ξg

s = 0: behaviour is dynamical: 

Bloch waves Channelling
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Two-beam imaging: defects

A good qualitative understanding of contrast can be obtained using 
the kinematical formula
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e.g. for dislocations g.R defines bending of diffracting planes



Two-beam imaging: defects

Dislocations are seen when 
the diffracting planes are 
distorted, i.e. when the dot 
product g.b is non-zero

g

b

Analysis of misfit dislocations 
in NiSi2/(001)Si interface

K = g+s

.

0 g



Core structure of dislocations: 
weak beam technique

Image is seen where planes are 
bent towards s = 0, i.e. 
progressively closer to the core as 
s increases

Dislocations in semiconductors are often 
dissociated

Dark field 
intensity

K = g+s

.

0 g



Stacking faults are visible when 
the diffracting planes are 
fractionally displaced, i.e. 
contrast depends on g.R R

g

Two-beam imaging: defects



Lattice imaging: many (strong) beams

Scattered amplitudes from Si
viewed along [110] as a 
function of film thickness. 
Phases vary also!

black atoms

black 
atomswhite atoms

NiSi2/(111)Si
Can we believe what we see?



Lattice imaging

Hence two problems:

� Seeing is not believing

� Limited resolution described by the 
contrast transfer function

� However, with computation many 
problems can be solved 

�B� NiSi2/(111)Si along [110] Si nanocrystal (Takeguchi JEM 48, 1087)



Lattice imaging

Current advances:

� Resolution improvements from 0.2nm to better than 0.1nm through
aberration correction

� Smaller focused probes

� Improved resolution of structure (e.g closely spaced atoms in 
semiconductors), lattice imaging by scanning TEM (STEM) using 
chemically sensitive signals



Electron Energy 
Loss Spectrometer
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U. Kaiser, D. Muller, J. Grazul, M. Kawasaki, Nature Materials, 1 102 (2002)

1 nm

HAADF: Sb dopants in Si
(courtesy of D. Muller)



Direct image HAADF image, courtesy of 
A. Bleloch showing higher 
resolution and chemical 
sensitivity

NiSi2/(001)Si 1984 - 2004



Convergent beam electron diffraction

Selected area 
diffraction

CBED LACBED



Electron rocking curves

LACBED InP/InGaAs MQW 200 disc (Vincent 
et al Inst Phys Conf Ser 90, 233 (1987) 

CBED  Si 220



High order (weak) reflections: grain boundaries in Si

J-P Morniroli and D. Cherns, Ultramicroscopy 62, 53 (1996)



High order reflections:

Rotation of wings in 
GaN ELOG structures 

Z Liliental-Weber and 
D Cherns JAP 89 7833 
(2001)



Low order (strong) reflections: polarity determination in 
GaN/GaN bicrystals

Asymmetry in the CBED patterns is a 
dynamical effect depending on 
double diffraction between 0002 and 
000-2 reflections. It represents 
breaking of Friedel�s Law�



Electron holography

specimen

Phase shift of the 
electron beam in the 
specimen

Reference 
wave

Phase shift depends on the �inner potential�, which can include contributions 
from internal (and external) magnetic or electric fields



RE Dunin-Borkowski et al: 
electron holography of 
magnetotactic bacteria, 
Science 282 (1998) 1868

Phase map around a 
charged latex sphere (K 
Yamamoto et al, JEM 49 
(2000) 31)

Examples of holography



Electric fields in 
GaN/InGaN LEDs

--------

Cherns, Barnard and 
Ponce: Solid State 
Comm. 111, 281 (1999) 

D. Cherns and C. Jiao 
PRL 87, 205504 (2001)



A problem requiring a combination of techniques!

Ref. A Briggs ( www.nanotech.org)



Some references and acknowledgements

� P.B. Hirsch et al �Electron Microscopy of Thin Crystals�
� M.H. Loretto �Electron Beam Analysis of Materials�
� D.B. Williams and C.B. Carter �Transmission Electron 

Microscopy�
� J-P. Morniroli �Large Angle Convergent Beam Electron 

Diffraction�


