Energetics of Hydrogen Storage Reactions: The Power of DFT

Jan Herbst Materials and Processes Laboratory GM R&D Center

ACKNOWLEDGEMENTS

Fellow explorer: Lou Hector Sometime shipmate: Wes Capehart

Outline

• Challenge

- Motivation
- Methodology
- LaNi₅, LaNi₅H₇: benchmark results
- $LaNi_5H_n$, $LaCo_5H_n$: can DFT predict preferred H sites, filling sequence, maximum H concentration?
- $\text{LiNH}_2 + \text{LiH} \leftrightarrow \text{Li}_2\text{NH} + \text{H}_2$: energetics of a novel hydrogen storage reaction
- Summary

Challenge

"Gotta Have" Fuel Cell Vehicles

CHALLENGE (cont'd) Gravimetric Energy Density vs. Volumetric Energy Density of Fuel Cell Hydrogen Storage Systems

CHALLENGE (cont'd) HYDROGEN STORAGE PARAMETER GOALS

GOAL
> 6 MJ/kg
> 6 MJ/ℓ
<5 %
~80 °C
<5 minutes
-40/+45 °C
150,000 miles

Motivation

• Assess the capability of density functional theory (DFT) for modeling properties of solid hydrides, including electronic structure, enthalpies of formation, hydrogen site preferences, and maximum hydrogen occupancy

Calculational Methodology (briefly!)

- Vienna *ab initio* simulation package (VASP)
- Projector-augmented wave (PAW) potentials

<u>GM</u>

Benchmark Results: LaNi₅, LaNi₅H₇

LaNi₅ and LaNi₅H₇ Crystal Structures

LaNi₅ hexagonal CaCu₅ P6/mmm

 $(LaNi_5H_7)_2$ hexagonal P6₃mc

LaNi₅H₇: Energy vs Volume E(V)

Crystal Structure Parameters for LaNi₅ and LaNi₅H₇

LaNi₅

Calc	Expt
5.008	5.017
3.967	3.986
135	137, 139
	Calc 5.008 3.967 135

LaNi₅H₇

	Calc	Expt		Calc	Expt		Calc	Expt
			La (2a) z	0.0029	0.0218	H1 (2b) z	0.8221	0.8137
a (Å)	5.363	5.409	Ni1 (2b) z	0.0077	0.0024	H2 (6c) x	0.1508	0.1596
c (Å)	8.723	8.600	Ni2 (2b) z	0.4854	0.4889	Z	0.2761	0.2804
			Ni3 (6c) x	0.4995	0.4975	H3 (6c) x	0.5058	0.5640
			Z	0.2542	0.25	Z	0.0630	0.0556

<u>GM</u>

Band Structures of LaNi₅ and LaNi₅H₇

 $\delta \rho = \rho(\text{LaNi}_5\text{H}_7) - \rho(\text{LaNi}_5\text{H}_0) - \rho(7\text{H non-int})$

LaNi₅H₇ Electron Localization Function (ELF)

Enthalpies of Formation ΔH

 $\Delta H(LaNi_5H_7) = 2/7[E(LaNi_5H_7) - E(LaNi_5)] - E(H_2)$ = - 40 kJ/mole H₂ expt: -32 - -37other calcs: -57 (1998); -45 (2001) $1 \text{ kJ/mole H}_2 = 0.01 \text{ eV/H}_2$ $\Delta H(LaNi_5) = E(LaNi_5) - E(La) - 5 E(Ni)$ $= -168 \text{ kJ/mole LaNi}_{5}$ expt: $-159 \pm 8; -166$

Elastic Constants of LaNi₅

<u>GM</u>

Results: LaNi₅H_n, LaCo₅H_n

???

- For a given crystal structure, can DFT
 - identify the sites preferred by hydrogen?
 - establish the filling sequence of hydrogen sites?
 - provide an estimate of the maximum hydrogen concentration?

LaCo₅ and LaCo₅H₄ Crystal Structures

LaCo₅ hexagonal CaCu₅ P6/mmm $(LaCo_5H_4)_2$

base-centered orthorhombic Cmmm

Strategy

- Focus on $LaNi_5H_n$ (P6₃mc structure) and $LaCo_5H_n$ (Cmmm structure)
- Calculate

 $\Delta H(LaNi_5H_n) = E(LaNi_5H_n) - E(LaNi_5) - (n/2)E(H_2)$ $\Delta H(LaCo_5H_n) = E(LaCo_5H_n) - E(LaCo_5) - (n/2)E(H_2)$ for various hydrogen configurations and occupancies

• Examined 38 hydrogen configurations in $LaNi_5H_n$, 93 configurations in $LaCo_5H_n$

Site-dependent Enthalpies of Formation in LaNi5Hn

Site-dependent Enthalpies of Formation in LaCo₅H_n

Energetics of a Novel Hydrogen Storage Reaction:

$LiNH_2 + LiH \leftrightarrow Li_2NH + H_2$

Enthalpies of Formation

```
\begin{split} \mathbf{T} &= \mathbf{0}:\\ \Delta H_0 &= \Delta H_{el} + \Delta H_{ZPE} \\ \Delta H_0(\text{LiNH}_2) &= \Delta H_{el}(\text{LiNH}_2) + \Delta H_{ZPE}(\text{LiNH}_2) \\ &= [E_{el}(\text{LiNH}_2) - E_{el}(\text{Li}) - \frac{1}{2}E_{el}(\text{N}_2) - E_{el}(\text{H}_2)] \\ &+ [E_{ZPE}(\text{LiNH}_2) - E_{ZPE}(\text{Li}) - \frac{1}{2}E_{ZPE}(\text{N}_2) - E_{ZPE}(\text{H}_2)] \end{split}
```

T = 298K:

<u>GM</u>

 $\Delta H_{298} = \Delta H_0 + \delta \Delta H_{298}$

$$\begin{split} \delta \Delta H_{298}(\text{LiNH}_2) &= \text{E}_{\text{ph}}(\text{LiNH}_2) - \text{E}_{\text{ph}}(\text{Li}) \\ &- \frac{1}{2} [7/2 \text{ kT} + \text{E}_{\text{vib}}(\text{N}_2)] - [7/2 \text{ kT} + \text{E}_{\text{vib}}(\text{H}_2)] \end{split}$$

Enthalpies of Formation ΔH_{298} and Reaction ΔH_{R}

<u>GM</u>

	LiNH ₂	LiH	Li₂NH
ΔH_{el}	-196	-84	-194
ΔH_{ZPE}	31	3	16
$\delta\Delta H_{298}$	-8	-4	-6
<mark>∆H₂₉₈ kJ/mole</mark>	-173	-85	-184
∆H ₂₉₈ expt kJ/mole	-176	-91	-222

 $LiNH_2 + LiH \leftrightarrow Li_2NH + H_2$

 $\Delta H_{R} = \Delta H_{298}(Li_{2}NH) - \Delta H_{298}(LiNH_{2}) - \Delta H_{298}(LiH)$

 $\Delta H_{R}(\text{components, expt}) = -222 + 91 + 176 = 45 \text{ kJ/mole}$

 $\Delta H_R(calc) = -184 + 85 + 173 = 74 \text{ kJ/mole}$

 ΔH_{R} (direct expt) = 66 kJ/mole

 $\Rightarrow \Delta H_{298} \exp(Li_2 NH) = -222 \text{ kJ/mole likely inaccurate}$

Summary

- DFT is capable of accurately describing properties of metallically-bonded hydrides such as $LaNi_5H_n$ and $LaCo_5H_n$, as well as complex hydrides such as $LiNH_2$ and Li_2NH
- Large, growing body of DFT results on other systems: binary hydrides, NaAlH₄, LiAlH₄, LiBH₄, etc.
 Session U14: Modeling Thursday 3/24 8a
- No question regarding the power of DFT for known hydrides

****** *Going forward*: one goal is the imaginative use of DFT to spur discovery of technologically viable hydrogen storage materials

