

Film or Funct

ing: made fast

ate, work p

nal

Free electron laser nitriding of metals: from basic physics to industrial applications

Peter Schaaf^{a)}, M. Shinn^{b)}, E. Carpene^{a)}, J. Kaspar^{c)}

Laser Nitriding

Sul

Reactive or

non-reactive

atmosphere

b)

C)

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Zweites Physikalisches Institut

Jefferson Lab 🔊

Free-Electron Laser

Fraunhofer Institut Werkstoff- und Strahltechnik

16. Juni 2006

University of the figen © Peter Schaat www.

Applications of Thin Films and Coatings

16. Juni 2006

- Laser Synthesis of Thin Films and Coatings (Nitriding, Carburizing, Hydriding): experimental principles, interactions, melt, plasma, dynamics, diffusion, solidification,
 - Fe-N and Fe-C,
 - Austenitic stainless steel
 - TiN and TiC
 - AIN and AIC
 - Si₃N₄ and SiC (IBM-Milliped)
 - Laser-Conditioning of Magnesium
 - Laser-Hydriding Ti-H
 - Production pc-a:Si(H) (TFT)
 - β-FeSi₂ (photovoltaics, optoelectr.)
 - Fe/Ag Multilayers by PLD (GMR, TMR)
 - Polymer-PLD (Applications)
 - Epitaxial recrystallisation (SiC, SiO₂)

Excimer Laser 55 ns
Nd:YAG Laser 8 ns
FEL 1 ps
Ti:Sapphire 150 fs

16. Juni 2006

Basic Physics

Laser Synthesis: temperature, plasma

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

Irradiation of Ti in N₂ Free-Electron Laser FEL

Overview: TiN coatings

Ti:Sapphire+CPA 750 nm 150 fs

TIA

Nd:YAG 1064 nm, 532 nm 6 ns

FEL 3100 nm, 1050 nm < 1 ps

16. Juni 2006

Faster and better with FEL ?

16. Juni 2006

FEL: TiN Synthesis

Line scan: velocity u=0.5 mm/s, line width D=0.4 mm, shift δ (50, 100, 200 μ m)

- formation of TiN
- concentration gradient
- independent of parameters
- structure of surface?

Sample	<i>Macro</i> t _m (µs)	<i>Macro</i> f _m (Hz)	<i>shift</i> δ(μm)	<i>Fluence</i> ø _m (J/cm²)	FEL - Ti in 1 bar N ₂
Ti-a1	250	60	200	123	<u></u>
Ti-a2	250	60	100	123	
Ti-a3	250	60	50	123	Always TiN
Ti-b1	500	30	100	246	
Ti-c1	750	30	100	369	
Ti-d1	1000	10	200	492	→ Ti-a2: 250 µs/60 Hz
Ti-d2	1000	10	100	492	O 10 - Ti-d3: 1000 µs/10 Hz - Ti-d3: 1000 µs/20 Hz -
Ti-d3	1000	20	200	492	
Ti-d4	1000	30	200	492	0 + 100 200 300 40
Ti-d5	1000	30	100	492	depth [nm]

16. Juni 2006

FEL TiN: Surface by SEM

a2: 250 µs, 60 Hz, 100µm

c1: 750 µs, 30 Hz, 100µm

d5: 1000 µs, 30 Hz, 100 µm

d1: 1000 µs, 10 Hz, 200µm

16. Juni 2006

Ti18: 250µs, 60Hz, 100µm: No Texture

Surface very rough, melting pearls, network of fine cracks, melting depth 30-40 μ m, TiN 5-15 μ m, primary solidification of TiN at the surface, TiN has a nitrogen rich kernel and less nitrogen cover, α '-Martensite in between

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

Ti23: 1000µs, 10 Hz, 200µm, (100) Texture

melting zone 20-30µm, TiN 0-25µm,

Very smooth surfaces, very few melt pearls, significant solidification lines, fine cracks.

cracks only within TiN. TiN cover smaller.

TiN perpendicular to the surfaces, dendritic solidification

16. Juni 2006

GIXRD: Texture, Rocking curves

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

FEL TiN: Pole Figures

16. Juni 2006

Simulation of Melting and Solidification

Strong dependence of the melting temperature on the nitrogen content

nitrogen concentration gradient:

re-solidification starts at surface

free (200) surface is most favorable

Comparison: Simulation and cross section

E. Carpene, PS, *MRS Proc.* **780** (2003) Y5.8.1 E. Carpene, M. Shinn, PS, Appl. Phys. A (2005)

16. Juni 2006

FEM - Simulations

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

© Peter Schaaf - www.schaaf.physik.uni-goettingen.de

FEL TIN: Surface by SEM

a2: 250 µs, 60 Hz, 100µm

c1: 750 µs, 30 Hz, 100µm

Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. Journal of Biomedical Material Research 1996; 32 (1): 55-63.

d5: 1000 µs, 30 Hz, 100 µm

d1: 1000 µs, 10 Hz, 200µm

16. Juni 2006

Real Human Implant (hip joint)

Laser-Structuring of an hip-joint

or and the second secon

3D image of a laser strcutured hio joint (drilling holes of D=200 µm)

Aim: durable osseo-integration and implant stability

<u>Way</u>: Surface must be a good stimulus for bone ingrowth (good microcontacts=osseo-integration) very stable bone-implant-connection

chemical modification for chemical resistivity

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

16. Juni 2006

Femtosecond pulses (Ti:sapphire laser)

Ti:Saphir mit CPA, $t_p=150$ fs, $\lambda=800$ nm

 $t_p=1.5\cdot10^{-13}$ s (pulse duration): \Rightarrow non-thermal treatment (Coulomb explosion)

$$t_p << t_e \Rightarrow T_{elec} >> T_{latt}$$

- affected depth ~ 10 nm
- plasma only <u>after</u> laser pulse
- highly ionized vapor

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

Industrial Applications

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

23

16. Juni 2006

Applications: Cylinder Liners

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

In series production: V6 engine

Treatment: mirror inside cylinder; rotating engine block, in series production, 5 Excimer simultaneous, 2 min/engine

⊗SMS

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

Application: Cylinder liners (grey cast iron)

After laser treatment

Reduction of oil consumption (30x) increase in efficiency and power

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

Application: Cam Shafts

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de

16. Juni 2006

- Reactive Laser treatments enable flexible, clean and fast ways for the production of new materials, thin films and coatings
- Easy and fast modification and functionalizing of thin films and coatings by laser beams.
- <u>But</u>: sensitive adaptation of material, laser, and laser treatment for the specific application.
- Combination of several methods for resolving complicated processes and optimization of processing necessary.
- FEL is very attractive for fast (competitive) surface treatments
- Nanostructuring, Pulse tailoring
- Many Perspectives for thin films

Cooperations

- FEL, Jefferson Lab, Newport News, Virginia, USA
- > AUDI AG, Daimler Benz, INA Wälzlager, IBM, Stihl
- Prof. H.-W. Bergmann (†), Uni Bayreuth, Metall. Werkstoffe
- Prof. A. Emmel, FH Amberg-Weiden, FB Maschinenbau
- Prof. M. Bamberger, Dr. W.D. Kaplan, Technion Haifa, Israel
- Prof. J. Wilden, TU Illmenau, Fertigungstechnik
- BIAS Bremen, LZH Hannover
- Fraunhofer ILT, IPT, RWTH Aachen
- ➢ IWT, IWS Dresden, MPI Halle
- LURE Paris, ESRF, Grenoble, BESSY, ANKA
- Prof. H.-J. Spies, TU Freiberg, Werkstoffkunde
- Prof. M. Somers, TU Kopenhagen, Materials Science
- Prof. E. Mittemeijer, Dr. G. Dehm, MPI Stuttgart
- Uni München, Nancy, Leuven, Krakow, Padova, Trento, Jena, Durban, Dortmund, Bratislava, Brno, Budapest, Helsinki, Erlangen, Belgrad, …

Thanks to

- Funding:
 DFG
 Uni Göttingen
 DAAD, EC
- Co-workers and Group:

16. Juni 2006

E. Carpene, M. Kahle, A. Müller, F. Landry, M. Han, S. Wagner, C. Illgner, S. Dhar, S. Cusenza, IWT Dresden: J. Kaspar FH Amberg: A. Emmel, R. Queitsch

FEL@Jefferson Lab:

Fred Dylla, Gwyn Williams, Jo Gubeli, Kevin Jordan

Your interest and patience

You are welcome to visit Göttingen

16. Juni 2006

University of Göttingen, 2nd Institute of Physics © Peter Schaaf - www.schaaf.physik.uni-goettingen.de