
The Next Technology Revolution - NANOTECHNOLOGY

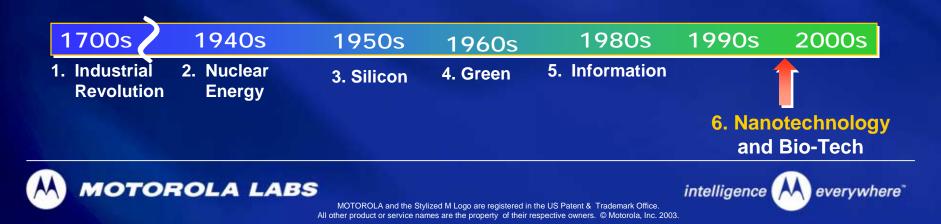
Dr. Iwona Turlik Motorola Labs

Outline

Background

- Opportunities in Nanotechnology
- Industry Trends
- Nano is here Current product implementations
- Nano as an industry disruptor
- Nano Focus Areas
- Application Opportunities (Electronics)
- Examples of Current Motorola Activities

Nanotechnology Revolution


Nanotechnology has the potential to transform life as we know it.

The ability to do things (measure, see, predict and make) on the scale of atoms and molecules thereby making products either smaller, faster, stronger or with new properties.

- Potential for the leap into devices utilizing quantum physics.
- Could enable new technologies, applications and industries never before imagined.

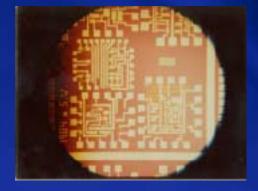
"Nanotechnology is the sixth truly revolutionary technology introduced in the modern world..." --D. Allan Bromley

Former Assistant to The President of the United States for Science and Technology (1989-1993)

History

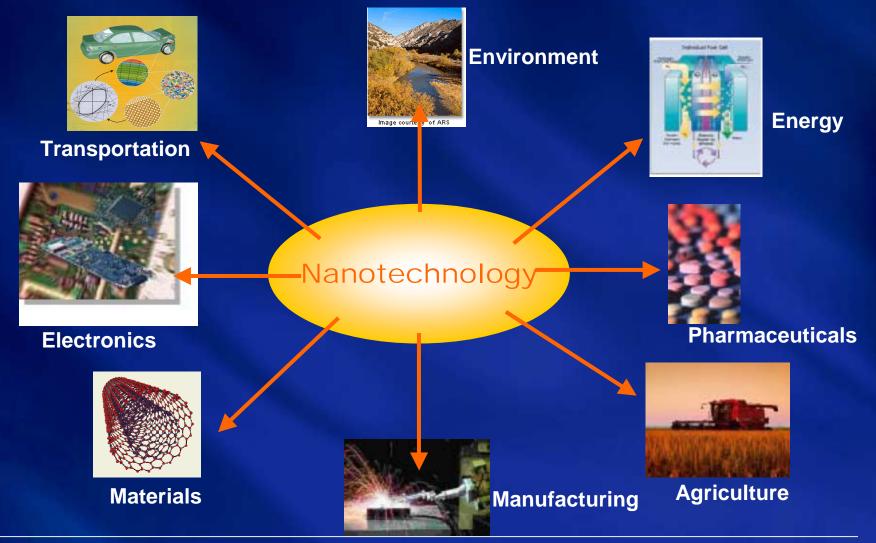
Timeline:

- 1959 Richard Feynman's speech "There's plenty of room at the bottom"
- 1974 First Molecular Electronic Device patent.
- 1981 IBM Invents scanning probe microscope: measure and identify structures at nano-scale. Ability to move individual atoms and molecules on surface.
- 1981 Drexel published Molecular Engineering : molecular machinery
- 1985 Curl, Kroto, Smalley **discovered buckey balls**. Stable molecules that contain 50 to 500 carbon atoms in a ball, using laser vaporized carbon.
- 1989 IBM Almaden Research Center : wrote IBM with 35 Xenon atoms.
- 1991 Discovery of carbon nanotubes by Sumin lijima at NEC Research Labs.
- 1993 First US research lab devoted entirely to nanoscience. Smalley at Rice University.
- 2000 US launch of National Nano-technology Initiative (NNI)
- 2003 President Bush signs Nanotechnology R&D act \$3.7 Billion over 4 years



Societal Impact of Nanotechnology from CREDIT SUISSE: Equity Research, May 2003

- Nano-technology is about manipulation at the atomic level and looks like a General Purpose Technology, e.g. steam engines, electricity, transistors.
- Leads to creative destruction and major economic revolutions.
- Starts as fairly crude technologies with limited use, but spread rapidly into new applications and enable new markets and industries.



Nanotechnology A technology that impacts many industries

CURRENT Consumer Products

- Nano enhanced products are here!!
- Migrating from niche to mainstream consumer and industry applications

Nanotex Materials

Nano-care[™] treated fiber surface with ~ 200 nm "whiskers"

Water Proof – Stain Proof

Carbon nano-tubes

Nano-clay composite gas diffusion barrier

Nanowax: CERAX

Nano Tin Oxide: Sunscreen

intelligence ᄊ everywhere"

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2003

WIS CU

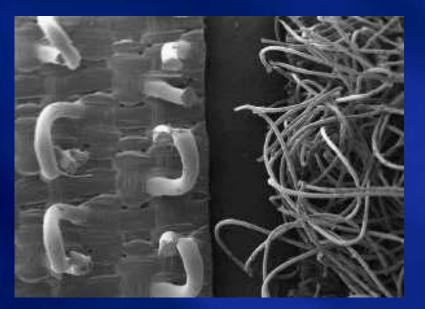
Outline

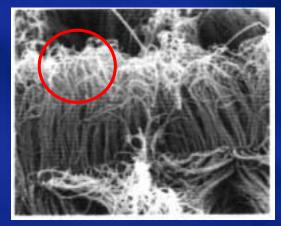
Background

- Nano as an industry disruptor
 Example: Nano Velcro
 Example: Lifetime tires
 Research to products
- Nano Focus Areas
- Application Opportunities (Electronics)
- Examples of Current Motorola Activities

Nanotechnology A Technology and Market Revolution

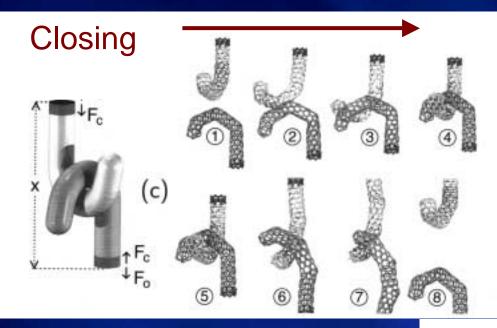
A truly new revolutionary technology completely disrupts Markets, Industries and Business Models


Example Scenario in electronics industry: What if packaging interconnects can be be replaced by a conductive CNT-Velcro based assembly process?



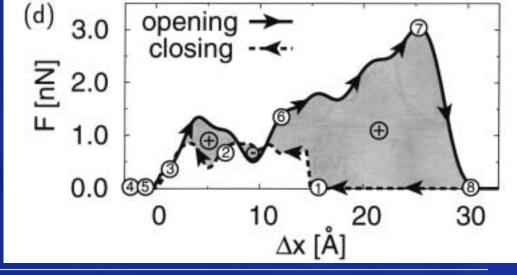
Nano Velcro

- Imagine manufacturing assembly without solder or adhesive
- A joint stronger than many traditional assembly methods.... and materials
- Manufactured at room temperature


Nano-hooks

Berber, Kwon, and Tomanek, *Phys. Rev. Letters*., Vol. 91, No 16 [13] Jean Gabriel

Molecular simulation of carbon nano-velcro

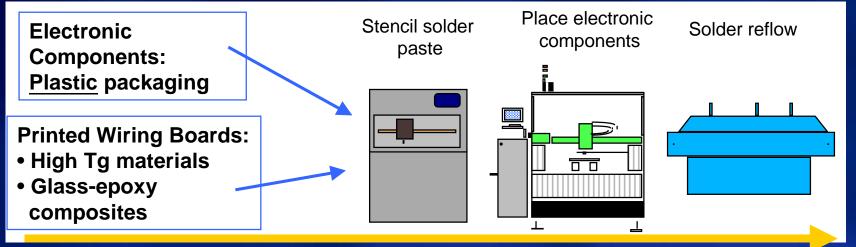

Estimated ideal pull strength = 3 GPa

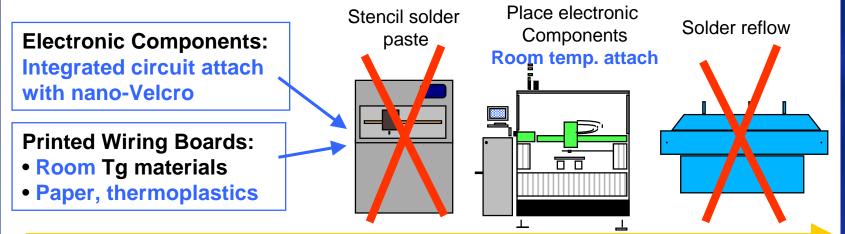
Measured yield point of #1010 CR steel ~ 0.3 GPa

Opening

Hook formed by insertion of pentagon and heptagon rings in all hexagon nano-tube

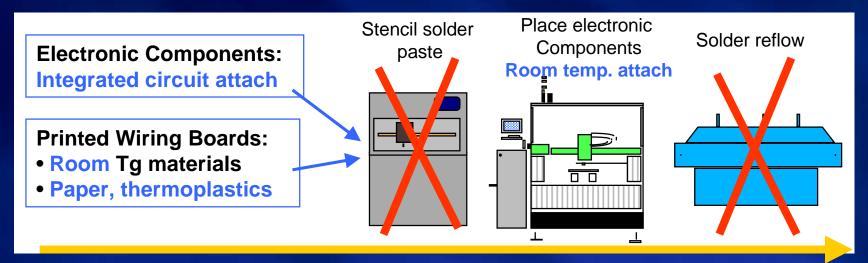
Berber, Kwon, and Tomanek, *Phys. Rev. Letters*., Vol. 91, No 16 Michigan State University





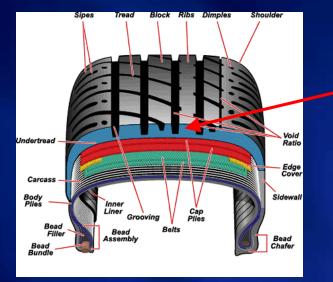
Assembly Process Disruption

Current Electronics Assembly Process Flow


Electronics Assembly Process Flow with nano-Velcro

Nano Velcro Market Disruption

Market Disruption


- Create new industry: paper, textile, thermoplastic high density "PWB's"
- Create new industry: Velcro finish electronics components
- Create new industry: Reel-to-reel, paper and textile electronics assembly
- Create new industry: Ultra-thin flexible IC manufacturing to replace traditional IC plastic packaging

Example Scenario In Auto Industry

Lifetime Tires

High wear resistance Nano elements in tires could enable OEM tires to last the lifetime of the car

Of the 250 million passenger car tires shipped in 2002, 190 million were replacement tires (MTB, RMA)

A potential innovation that completely disrupts the tire industry business model i.e., low price OEM tires and high price replacement tires

Research to Products

Typical prerequisites:

- Scalable manufacturing processes
- Low cost tools for testing and evaluation
- Well developed supplier base
- Standards

Some disruptive nanotechnologies may be inherently scalable with very low go-to-market times

Nano will enable incremental innovation in some areas, while leading to disruptive innovation in others

- Background
- Nano as an industry disruptor
- Industry Focus Areas
 > Basic Materials
 > Electronic Devices
 > Multifunctional composites
- Application Opportunities (Electronics)
- Examples of Current Motorola Activities

Nanotechnology

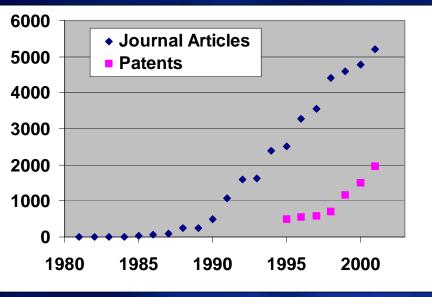
Major Research Areas for Electronics Industry

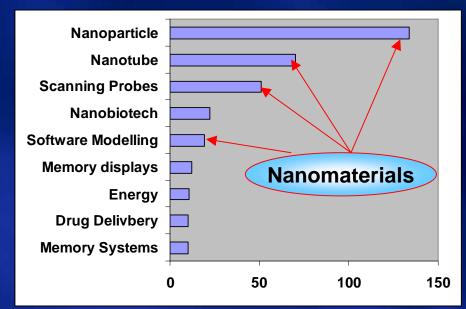
Basic Nano-Materials

Includes manufacturing processes, characterization, metrology and standards E.g. Carbon nano tubes, quantum dots, nano powders, etc.

- Displays
- OFETS
- Nano pockets
- Memory
- Super Capacitors, etc.

<u>Multifunctional</u> Composites


- Self-cleaning
- Color changing plastics
- Self-healing
- Structural materials,
- 'Aware' materials, etc.


Nanotechnology Current Technology Focus

Nano Publications And Patents

Source: "Nanotechnology – Size Matters", white paper, Institute of Nanotechnology

Nano Startups By Area

Source: CREDIT SUISSE: Equity Research, May 2003

- Majority of nano activity is currently focused on development, characterization, metrology and standards of basic nano-materials
- Significant applications in electronic-devices and multifunctional composites are beginning to emerge

Nano Materials and Suppliers <u>A Partial List</u>

Materials	Company	Applications	
Carbon Nano Tubes	NEC, Sumitomo, Phillips, CNI, GE, Hyperion Catalysis, Carbolex, etc.	Displays Polymer Composites, computing, memory, sensors, fuel cells	
Nano silicates	Nanocor, SW Clay Products, Bayer, Honeywell, etc.	Paint pigments Polymer composites	
Metals	Argonide, Nanomat, NRC, etc.	Catalysts, soldering, welding	
Metal Oxides	GE, Argonide, Nanophase, Nanomat, etc.	Thermal Substrates, heat dissipating polymers	
Quantum dots	Qdot, GE, Phillips, Siemens, etc.	Medical electronics – diagnostics	

Enablers for Devices and Applications

Electronic Device Companies <u>A Partial List</u>

Devices	Company	Benefit	
Nano Memory	Nantero, HP, IBM, etc.	Universal flash memory; higher density	
Displays	Motorola, Samsung, NEC, Matsushita, etc.	Brighter, lower power, inexpensive displays	
Transistor (Silicon and Organic)	IBM, Intel, AMD, TI, Motorola, etc.	Enabler for low power processing and memory	
Data Storage	IBM (millipede), Seagate, HP, etc.	1TB/sq. in. density	
Nano Computer	HP, IBM, Hitachi, Fujitsu, Intel, etc.	Size, performance and mobility; Pervasive computing	

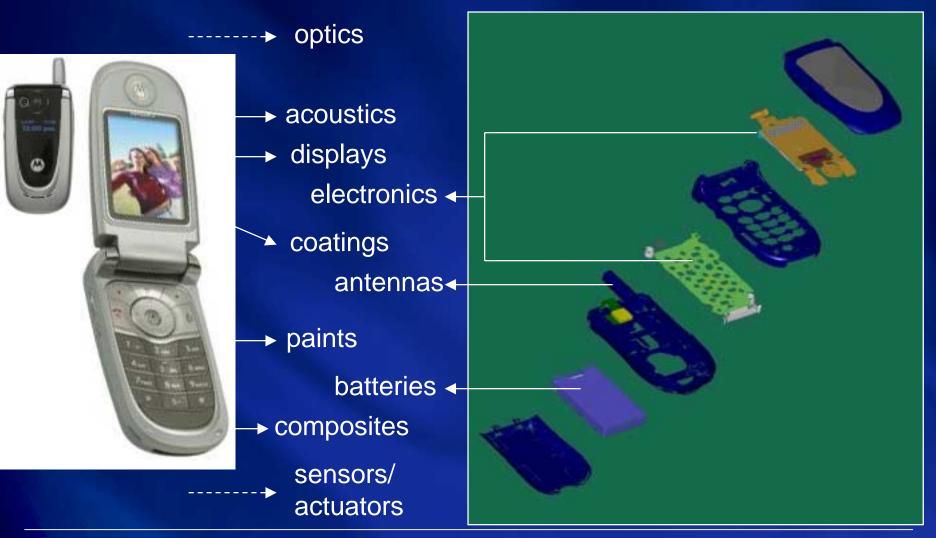
Multifunctional Composite Companies

A Partial List

Macro-Application	Company	Benefit	
Structural Composites (↑ stiffness, ↑ toughness)	PolyOne, Bayer, Nanocor, Honeywell	Higher reliability; lighter weight composites, thermal stability, etc.	
Self cleaning	Degussa, BASF, STO, Fraunhoffer	Cleaner surfaces, display appearance, etc.	
Scratch Resistance	Du Pont, Nano film	Aesthetics (looks like new), longevity	
Color change	Matsui, Qdot	New functionality, fashion	
Nano polymer films	Honeywell, PolyOne, Bayer	Preserves freshness. Food wrapping, beverage containers	

- Background
- Nano as an industry disruptor
- Industry Focus Areas
- Application Opportunities (Electronics)
 Mobile Phone
 Nano composites
- Examples of Current Motorola Activities

Motorola


Motorola is engaged in several segments of the electronics and telecommunication industries

intelligence ᄊ everywhere

Application Example: Mobile Phone

intelligence ᄊ everywhere

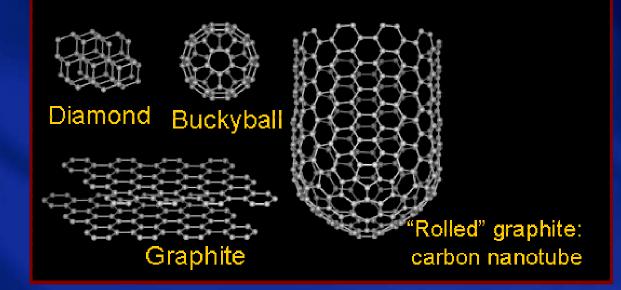
Some applications and benefits of Nanotechnology

Nano Composites: stronger, tougher, stiffer, lighter materials (adhesives, structural, electronic, optical functionality), nanobiotech for sensing, actuating, power functions

Nanodisplays: Large, lower cost and brighter displays based on embedded carbon nanotubes

Nano antennas: Nano scale fractal antennas for multiple spectra and broadband

Nano power: High capacity power sources (storage, conversion, advanced fuel cells, photonic energy), parasitic energy harvesting, nanobiotech related functionality



Nano Composites

- A phone housing requires stiffness, toughness, moldability, paintability, surface finish, flame retardance, chemical resistance and thermal stability, recyclability, etc.
- Traditional engineering design is often a compromise of these competing requirements
- Nano materials enable application-specific, tailored material design

e.g: CNTs and Nano-silicates

intelligence ᄊ everywhere"

Nano materials for tailored composites

Compared to current phone housing, nano materials will have:

Modulus

24

Break strength

2.1

PC

0.055 0

- High Strength ullet
- **High Stiffness**

1400

1200

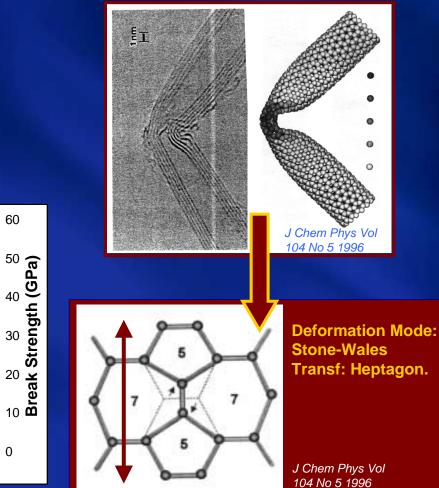
1000

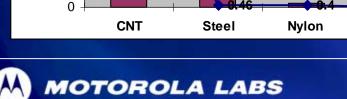
800

600

400

200


Modulus (GPa)


High Toughness

1280

Multifunctionality, etc. ullet

Extremely flexible (reversible)

207

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office All other product or service names are the property of their respective owners. © Motorola. Inc. 2003

40

Nano materials for tailored composites

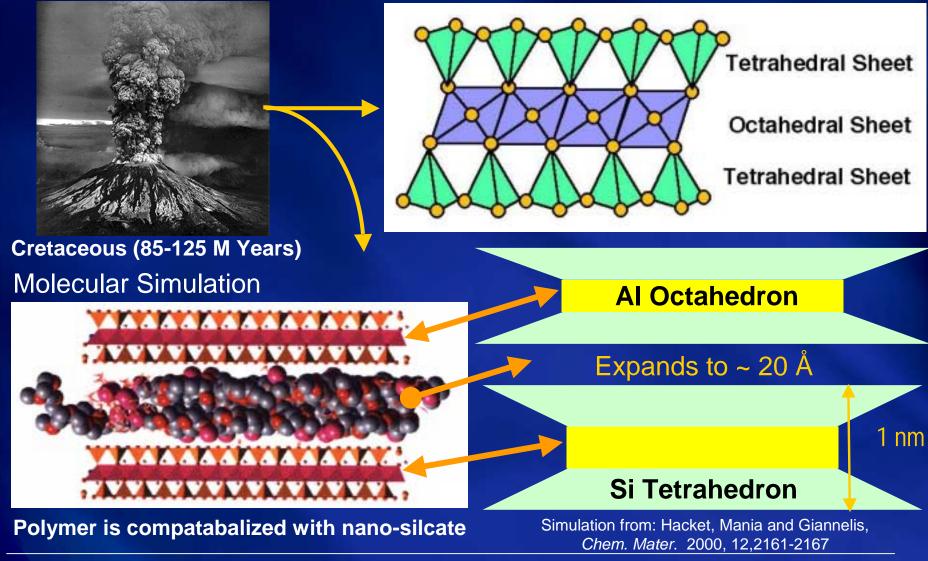
Current Carrying Capacity SWNT: 10⁹ A/cm² Copper wire : 10⁶ A/cm² (burns)

CNT can be metallic or semiconducting, depending on chirality

Semiconductor

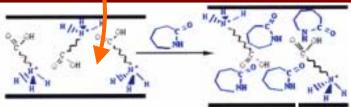
Field Emission: Excellent field emitter; high aspect ratio and small tip radius of curvature are ideal for field emission.

• SWNT Radius 0.6 to 1.8 nanometers


$E_{max} \propto V / R$ At 30 V concentrated electric field ~ 10⁷ to 10⁸ V/cm

Nano Silicate Polymer Composites

Nano-silicates: a natural nano-material



Nano Silicate Polymer Composites

in-situ nano-silicate polymerization

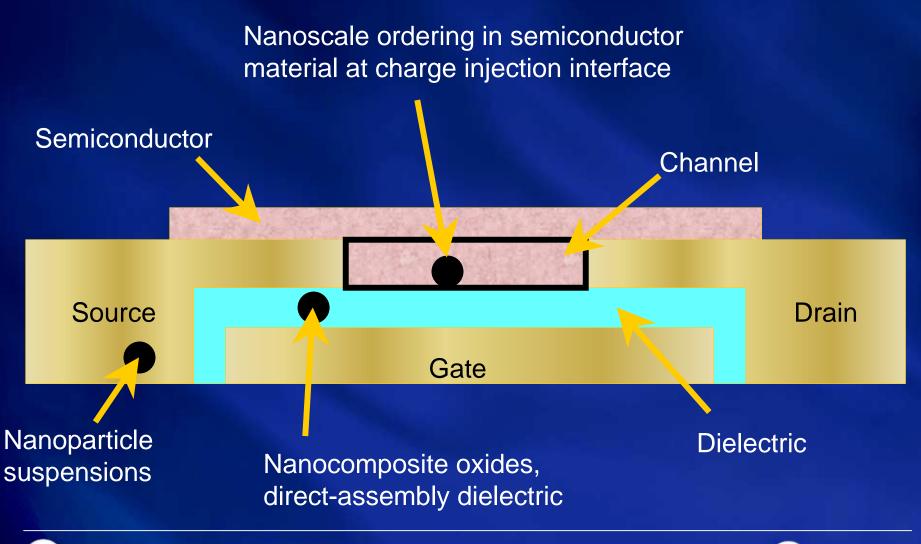
Nylon Synthesis

MOTOROLA LABS

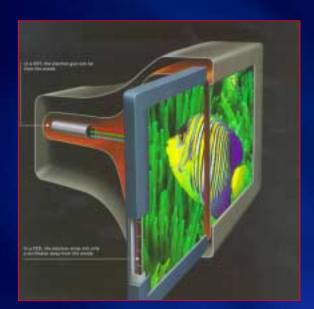
Significant macro-property improvements. A little goes a long way !

	Nylon 6 Un- Reinforced	Nylon 6 Glass Filled 20 wt %	Nylon 6 Clay Nano Composit e 4 wt %
Tensile Strength (MPa)	72	62 (0.9x)	115 (1.6x)
Elastic Modulus (GPa)	1.1	1.4 (1.3x)	2.1 (1.9x)

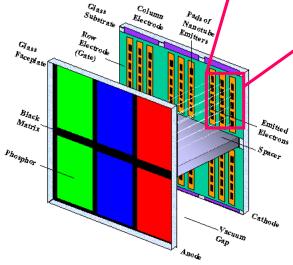
- Nano materials enables unprecedented opportunities to tailor macro-properties.
- Key driver is interfacial effects versus weighted average of traditional fillers.



- Background
- Nano as an industry disruptor
- Industry Focus Areas
- Application Opportunities (Electronics)
- Examples of Current Motorola Activities
 > Organic Transistors
 > Displays
 > Self-healing
 - Standards

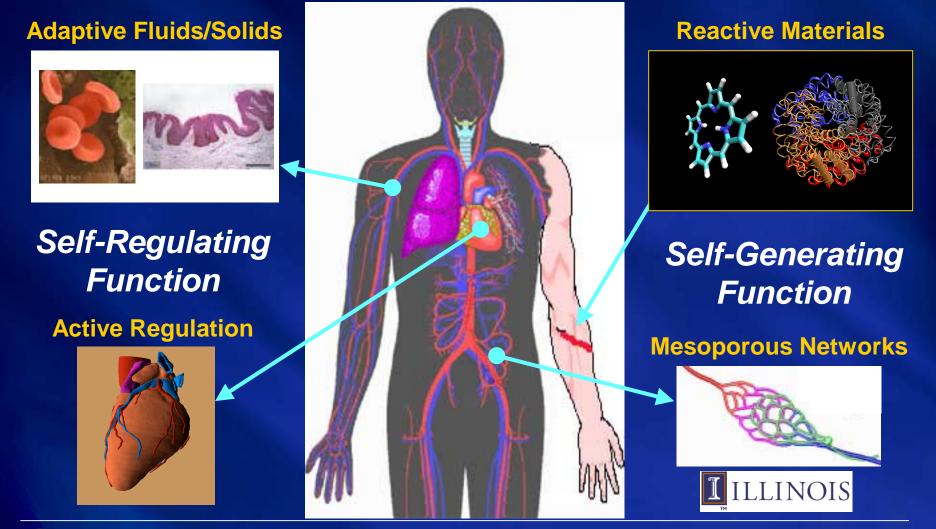

Nanoelements of an OST

Nano Emissive Display

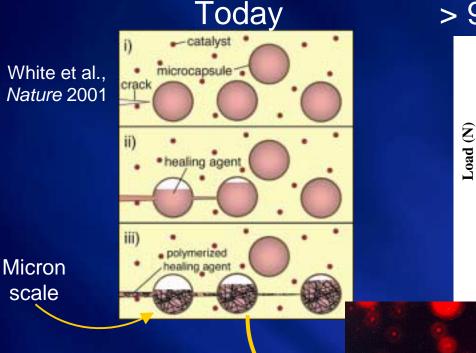

Selective growth only on pads

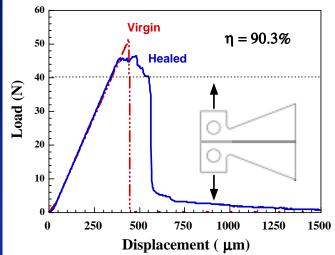
CRT - electrons from three cathodes are scanned across screen SEM cross section of CNT over BoroSilicate glass

NED electrons from millions of carbon Nanotubes travel to a screen


Millions of cathodes enable a <u>thin,</u> high clarity flat screen TV

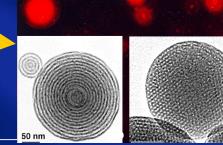
Self-Healing Materials, Inspired by Biology Creating a Synthetic Autonomic System




intelligence ᄊ everywhere"

Self-Healing Materials

Self-healing Functionality: The ability to repair damage automatically without manual intervention.



> 90% strength recovery

Brown et al., *Exp. Mech.*, 2002

Nano can enable self-assembled nano-containers: Self-heal at nano scale

Collaboration with Prof. Nancy Sottos TAM Dept. & Beckman Institute for Advanced Science and Technology

Fan et al., *Nature* 2000 Lu, et al., *Nature* 2001

intelligence ᄊ everywhere"

Motorola Chairing IEEE Nanotechnology Working Group

Draft Standard Test Methods for Measurement of Electrical Properties of Carbon Nanotubes (P1650[™])

http://grouper.ieee.org/groups/1650

MOTOROLA LABS

IEEE Nanotechnology Standards Roadmap Workshop - Standardization Along the Path from R&D to Commercialization

<u>Workshop Held on 11/5/03 –</u> <u>90 Registrants from Industry, Academia</u> <u>and International Labs</u>

IEEE Workshop to Create a Standards Roadmap for Nanoelectronics materials, devices, and systems

http://grouper.ieee.org/groups/nano

Nano-today is only the beginning.....

1918-1988

Richard Feynman, 1965 Nobel laureate in physics: "There is Plenty of Room at the Bottom" envisioned:

<u>Molecular Level of Assembly</u>: Today we carve what we need from a large piece of material. Nano is the reverse, builds from the molecular level up. Building atom by atom enables increased product complexity and exact composition, even molecular machinery.

