Physics, Physicists and Revolutionary Capabilities for the Intelligence Community

Dr. Lisa Porter
Director, IARPA
APS Meeting, May 2009

This briefing is UNCLASSIFIED

UNCLASSIFIED

The Three Strategic Thrusts of IARPA

- Smart Collection: dramatically improve the <u>value</u> of collected data
 - Innovative modeling and analysis approaches to identify where to look and what to collect
 - Novel approaches to access
- **Incisive Analysis**: maximizing insight from the information we collect, in a <u>timely</u> fashion
 - Advanced tools and techniques that will enable effective use of large volumes of multiple and disparate sources of information
 - Innovative approaches (e.g., using virtual worlds, shared workspaces) that dramatically improve the productivity of analysts
 - Methods that incorporate socio-cultural and linguistic factors into the analytic process
- Safe and Secure Operations: countering new capabilities of our adversaries that could threaten our ability to operate effectively in a <u>networked</u> world
 - Cybersecurity, with a focus on future vulnerabilities
 - Quantum information science and technology

The Three Strategic Thrusts of IARPA

- Smart Collection: dramatically improve the <u>value</u> of collected data
 - Innovative modeling and analysis approaches to identify where to look and what to collect
 - Novel approaches to access
- **Incisive Analysis**: maximizing insight from the information we collect, in a <u>timely</u> fashion
 - Advanced tools and techniques that will enable effective use of large volumes of multiple and disparate sources of information
 - Innovative approaches (e.g., using virtual worlds, shared workspaces) that dramatically improve the productivity of analysts
 - Methods that incorporate socio-cultural and linguistic factors into the analytic process
- Safe and Secure Operations: countering new capabilities of our adversaries that could threaten our ability to operate effectively in a <u>networked</u> world
 - Cybersecurity, with a focus on future vulnerabilities
 - Quantum information science and technology

The "Obvious" Need for Physics

Novel Sensors/Collectors

- Modalities (e.g., acoustic, chemical, optical, RF, etc)
- Size, weight, and power
- Emplacement
- Exfil of data

- 1994: Shor's algorithm
- 1995-96: Shor and colleagues: QEC
- Steady progress in basic understanding and operation of many different kinds of qubits since
- Challenges as we move beyond 1-3 qubits include:
 - Controllable qubit interactions
 - Miniaturization and integration to increase qubit density
 - New physics arising from the assembly of manyqubit systems
 - Process and state validation for larger systems

The "Not-So-Obvious" Need for Physics: Incisive Analysis

Understanding and Improving the Analytic Process

 Computational cognitive models of the analysis process that bridge the gap between neurobiological "first principles" models and psychological "macro models"

This would enable

- Prediction of effects of various analysis techniques
- New strategies for mitigating human failure modes
- Identification of the impact of individual cognitive traits on analytic style and performance
- Development of automated sense-making tools to assist human analysts
- •What lessons can we bring to this challenge from multi-scale modeling in physics disciplines? E.g.,
 - CFD: DNS to RANS
 - Materials: Ab initio to Continuum Mechanics

Most understood

Least understood

Sensemaking loop

- Higher-level cognition
- Relational processing
- Model learning
- Hypothesis generation/testing
- Top-down attention

UNCLASSIFIED

The "Not-So-Obvious" Need for Physics: Incisive Analysis

- Estimation and Communication of Uncertainty and Risk
 - Sources of Uncertainty
 - Sensors/detectors with multiple modalities
 - Fusing huge volumes of data that are in multiple formats, languages
 - Cultural models; human models
 - Intentional errors
 - What can we leverage from Uncertainty Quantification methods?
 - Aleatory (inherent variability with sufficient data) vs Epistemic (uncertainty from lack of knowledge)
- Experimental Design & Validation of Results
 - Scientific method: Experimental results should be repeatable
 - Clearly stated hypotheses with transparent experimental design
 - Challenge of good statistics when dealing with human subjects
 - Ground truth for rare event modeling and human modeling
 - Standard approach is to "validate" with a handful of SMEs

The "Not-So-Obvious" Need for Physics: Cybersecurity

- The internet will soon be connected to all manner of devices, from environmental monitoring sensors to home appliances.
 - Very soon, the number of device-to-device communications will exceed human-centric communications.
 - Ultimately, the future internet could connect over a trillion devices.
 - The most common interface will not be the traditional computer.
 - Embedding the physical world into the cyberspace will result in many benefits, including remote real-time monitoring, enhanced routing for delivery services, just-in-time maintenance, demand-based servicing, etc.
 - But is also obviously introduces new and unexplored vulnerabilities.
- It will not be long before reliable access to the internet will be possible from almost anywhere in the world: "ubiquitous connectivity"
- Couple ubiquitous access with the possibility of storing all of one's information and tools in the network (the "cloud"):
 - The need to protect government and commercial (IP) information in the "cloud" will require usable and robust data encryption and privacy protection tools.

The "Not-So-Obvious" Need for Physics: Cybersecurity

- There are no fundamental laws or limits in this domain.
 - There are no conservation laws.
 - There is no Shannon's Law equivalent or Carnot cycle equivalent.
- What is a secure system?
 - What are meaningful quantitative measures of security of a system?
 - Given 2 systems, are there meaningful ways to compare their security?
 - What does "more secure" mean?
- Are there a finite number of attack classes?
- Given a System P and an attack class A, is there a way to:
 - Prove that P is not vulnerable to any attack in A?
 - Construct a system P' that behaves similarly to P except is not vulnerable to any attack in A?
- Can we reason about composed systems such that the security properties of compositions can be derived from the properties of their components?
- The push-back:
 - The predictive power of physical science is too high a standard.
 - Physicists do not have to contend with electrons as antagonists that may want to hide their true behaviors or intent.

Concluding Thoughts

- Physicists will continue to play a critical role in advancing our nation's intelligence capabilities in the "obvious" ways, in areas ranging from novel sensors to quantum information science.
- However, there are many ways that physicists can impact other challenge areas by bringing their methodologies and approaches to bear on the problems. Examples include:
 - Understanding and Improving the Analytic Process
 - Dealing with Uncertainties
 - Validation and Experimental design
 - Cybersecurity
- True multidisciplinary approaches will be key.
- How to find out more about IARPA: <u>www.iarpa.gov</u>