#### Hydrogen Production Technologies/Strategies for Automotive Applications

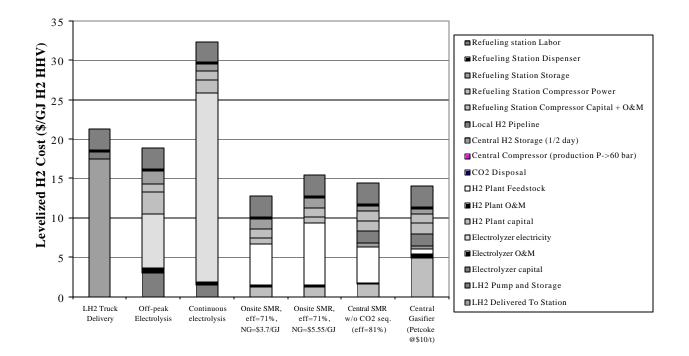
Robert H. Williams Princeton Environmental Institute Princeton University

Panel on Hydrogen-Powered Vehicles: Pathways and Challenges 27th Annual Conference of the National Association of Environmental Professionals Dearborn, Michigan

26 June 2002

## **OUTLINE OF PRESENTATION**

- Listing of medium-term (2010-2020) options for  $H_2$  production and prospective costs
- Focus on centralized  $H_2$  production options for the long term (> 2020) characterized by zero or near-zero lifecycle CO<sub>2</sub> emissions:
  - $H_2$  from natural gas via steam reforming and from coal via gasification (*current technology*) with geological sequestration of separated CO<sub>2</sub>
  - H<sub>2</sub> from water via electrolysis and renewable electricity (*future technologies*)
  - H<sub>2</sub> from water via complex thermochemical cycles using nuclear heat from high-temperature gas-cooled reactors (*future technologies*)
- Outlook for geologic sequestration of CO<sub>2</sub>
- How much is it worth to find out (soon) if geological sequestration is viable at large scales?


#### H<sub>2</sub> PRODUCTION OPTIONS

(*Medium term*—2010-2020)

- Merchant H<sub>2</sub>
- Production at Refueling Stations (10<sup>6</sup> scf/d)
  - Electrolysis [using power @ 2 ¢/kWh (offpeak) or
    6.9 ¢/kWh (ave commercial rate for 2020)]
  - NG steam reforming (using NG at ave commercial or industrial NG price for 2020)
- Centralized Production (e.g., at refineries)
  - NG steam reforming (using NG at ave NG price for electric generators in 2020)
  - Petcoke gasification [using petcoke @ \$10/t (\$0.35/GJ)]

#### **RETAIL H<sub>2</sub> COSTS ~ 2010-2020**

 $(P_{OFFPEAK.ELECT} = 2.0 \ \text{¢/kWh}_{e}; P_{COMMERCIAL.ELECT} = 6.9 \ \text{¢/kWh}_{e};$  $P_{INDUSTRIAL.NG} = \$3.7/GJ; P_{COMMERCIAL.NG} = \$5.55/GJ; P_{PETCOKE} = \$0.35/GJ)$ 



## **CENTRALIZED H<sub>2</sub> PRODUCTION OPTIONS** (Long-term—beyond 2020)

- Steam reforming of natural gas—without and with sequestration of separated  $CO_2$
- Coal gasification—without and with sequestration of separated CO<sub>2</sub>
- Advanced electrolysis via low-C or zero-C electricity sources
- Complex thermochemical cycles using nuclear heat from high-T gas-cooled reactor

#### MAKING H<sub>2</sub> FROM FOSSIL FUELS

Begin with "Syngas" Production:

**Oxygen-Blown Coal Gasification:** 

Steam-Reforming of Natural Gas

 $\begin{array}{l} {\rm CH}_{0.82}{\rm O}_{0.07} + 0.47 \ {\rm O}_2 \ + \ 0.15 \ {\rm H}_2{\rm O} \ \\ \begin{array}{l} \rightarrow \\ \rightarrow \ 0.56 \ {\rm H}_2 \ + \ 0.85 \ {\rm CO} \ + \ 0.15 \ {\rm CO}_2 \end{array} \end{array}$ 

 $CH_4 + H_2O \rightarrow CO + 3H_2$ 

Followed by Syngas Cooling & Water-Gas Shift Reaction:

 $CO + H_2O \rightarrow H_2 + CO_2$ ,

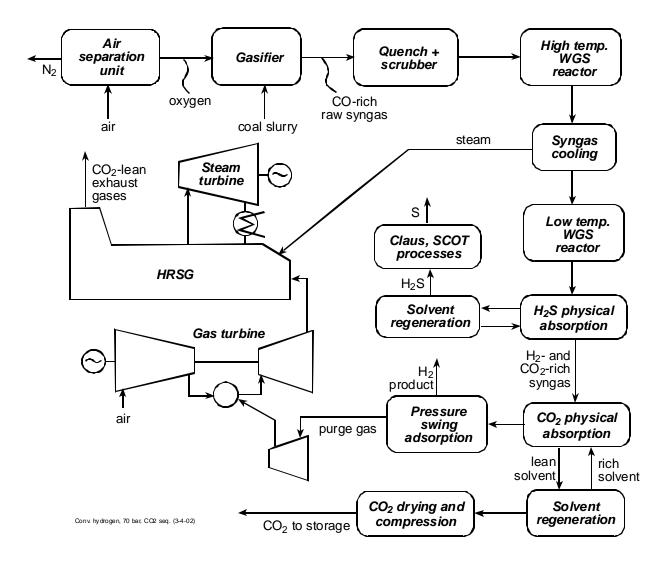
Net Effect:

 $\begin{array}{ll} CH_{0.82}O_{0.07} + 0.47 O_2 + 1.00 H_2 O \neq \\ Prime 1.40 H_2 + 1.00 CO_2 \end{array} \qquad \qquad CH_4 + 2 H_2 O \neq CO_2 + 4 H_2 \\ \end{array}$ 

Followed by  $CO_2/H_2$  Separation via Physical or Chemical Process

HHV efficiency [(H<sub>2</sub> output)/(Total primary fuel input)]:

~ 70% for coal


~ 80% for natural gas

Separated CO<sub>2</sub> Can Be Disposed of at Relatively Low Incremental Cost

# WHY COAL?

- Coal resources abundant globally:
  - Recoverable coal ~ 200,000 EJ (2000 y supply at current coal use rate; 580 y supply at current total fossil energy use rate)
  - Recoverable natural gas:
    - Conventional ~ 12,000 EJ
    - Unconventional ~ 33,000 EJ
- Much of global population (*e.g.*, *China*, *India*) heavily coal-dependent
- Coal prices low [1999 NG price for US electric generators = 2.1 X coal price; projected (2020) = 4.0 X coal price]
- Coal prices not volatile
- Environmental issues  $\rightarrow$  need radical technological innovation
- Gasification  $\rightarrow$  near-zero emissions of air pollutants/GHGs
- Residual environmental, health, safety problems of coal mining

#### H<sub>2</sub> Production with CO<sub>2</sub> Sequestration - Based on Commercial Technology -



#### CONSUMER FUEL COSTS FOR GASOLINE ICE CARS AND H<sub>2</sub> FUEL CELL CARS

(excluding retail fuel taxes)

| Energy carrier                                                                | Fuel cost (<br>gasoline ed | e                | Cost of driving a car<br>(¢ per mile) |                     |              |  |
|-------------------------------------------------------------------------------|----------------------------|------------------|---------------------------------------|---------------------|--------------|--|
|                                                                               | Production<br>cost         | Cost to consumer | Gase                                  | H <sub>2</sub> FCV  |              |  |
|                                                                               |                            |                  | Current<br>ICEV<br>(28 mpg)           | ICE/HEV<br>(48 mpg) | (82 mpg, ge) |  |
| Gasoline<br>( <i>US</i> , 2000)                                               | 96                         | 114              | 4.1                                   | 2.4                 | -            |  |
| $\begin{array}{c} H_2 \text{ from coal} \\ (CO_2 \text{ vented}) \end{array}$ | 85                         | 193              | -                                     | -                   | 2.4          |  |
| $\begin{array}{c} \text{H}_2 \text{ from coal} \\ (CO_2 seq.) \end{array}$    | 108                        | 218              |                                       |                     | 2.7          |  |

#### CENTRALIZED ELECTROLYTIC H<sub>2</sub> PRODUCTION USING ADVANCED TECHNOLOGY

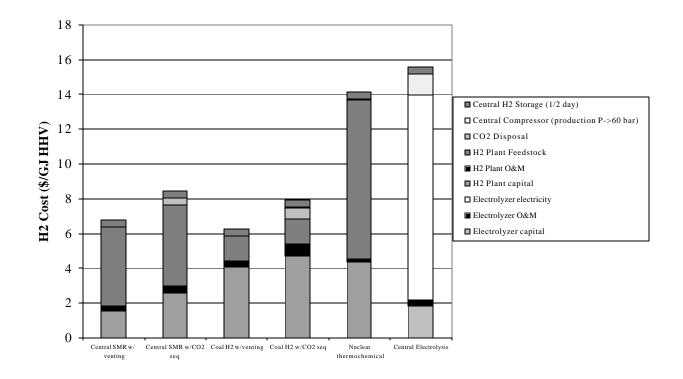
 $(500 MW_h @ 60 bar, electricity @ 4.0 ¢/kWh)$ 

| Tech-         | Yech-<br>ologyTargets for capital<br>cost/performance |            |          | Plantgate cost breakdown (\$/GJ, HHV basis) |                  |                     |                          |              |               |
|---------------|-------------------------------------------------------|------------|----------|---------------------------------------------|------------------|---------------------|--------------------------|--------------|---------------|
| nology        |                                                       |            |          | Electrolysis                                |                  | Other costs/credits |                          |              | Total<br>cost |
|               | Capital $(\$/kW_h)$                                   | P<br>(bar) | η<br>(%) | Cap,<br>O&M                                 | Elec-<br>tricity | Comp                | O <sub>2</sub><br>Credit | Stor<br>-age | COSt          |
| Lo P,<br>Lo T | \$300                                                 | 2          | 83       | 2.14                                        | 13.39            | 1.16                | - 1.54                   | 0.41         | 15.6          |
| Hi P,<br>Lo T | \$400                                                 | 31         | 80       | 2.85                                        | 13.89            | 0.16                | - 1.54                   | 0.41         | 15.8          |
| Lo P,<br>Hi T | \$900                                                 | 2          | 111      | 6.42                                        | 10.01            | 1.16                | - 1.54                   | 0.41         | 16.5          |

#### THERMOCHEMICAL H<sub>2</sub> FROM H<sub>2</sub>O USING NUCLEAR OR SOLAR HEAT

- Direct  $H_2O$  dissociation requires T ~ 4000 °C
- Complex thermochemical cycles being developed—e.g., S-I process at General Atomics:

$$H_2SO_4 \rightarrow H_2O + SO_2 + \frac{1}{2}O_2 (850 \text{ °C}),$$
  
2 HI → H<sub>2</sub> + I<sub>2</sub> (450 °C),  
2 H<sub>2</sub>O + I<sub>2</sub> + SO<sub>2</sub> → H<sub>2</sub>SO<sub>4</sub> + 2 HI (120 °C)


• ? < 50%

- Projected cost of nuclear heat from MHR ~ 1.6 ¢/kWh<sub>t</sub> compared to ~ 4.2 ¢/kWh<sub>e</sub> for electricity (*future technology*)  $\rightarrow$  @  $\eta = 50\%$ , nuclear contribution to H<sub>2</sub> cost = \$1.3/gge and total cost ~ \$2.0/gge...compared to total cost of \$1.1/gge for coal H<sub>2</sub> w/CO<sub>2</sub> sequestration (*commercial technology*)
- Solar heat-based processes not less costly than nuclear

#### **PLANT-GATE H<sub>2</sub> PRODUCTION COSTS**

Current NG, coal technologies (2020 fuel prices), Future nuclear, renewable technologies

 $(P_{NG} = \$3.7/GJ; P_{COAL} = \$0.9/GJ; P_{NUC,HEAT} = 1.6 \ c/kWh_t; P_{RENEW,ELECT} = 4.0 \ c/kWh_e)$ 



# **OPTIONS FOR CO<sub>2</sub> DISPOSAL**

- Deep ocean disposal
- Disposal in geological media
  - Depleted oil and gas fields
  - Beds of unminable coal
  - Deep saline aquifers (at least 800 m down)
- Disposal as carbonate rocks

#### GLOBAL CAPACITY FOR CO<sub>2</sub> STORAGE IN DEEP SALINE AQUIFERS

- If closed aquifers with structural traps needed: ~ 50 GtC
- If large, open aquifers w/good top seals also usable:
  - Estimate by IEA GHG R&D Programme: up to 2,700 GtC
  - Estimate by Hendriks (*Utrecht University*): ~ 13,000 GtC
- For comparison:
  - Cumulative emissions, 1990-2100, from fossil fuel burning, IS92a: 1,500 GtC
  - Carbon content of remaining exploitable fossil fuels (*excluding methane hydrates*) ~ 5,000 7,000 GtC

#### **CO<sub>2</sub> DISPOSAL EXPERIENCE**

- Enhanced oil recovery: 74 projects worldwide injecting 30 MMt CO<sub>2</sub>/y; 4% of US oil so produced—mostly using CO<sub>2</sub> from natural reservoirs (> 3000 km of CO<sub>2</sub> pipelines in US), but Weyburn (Canada) uses 1.5 MMt/y of CO<sub>2</sub> piped 300 km from North Dakota coal gasification plant
- Enhanced coal bed methane recovery: 1 commercial project in San Juan Basin (US)
- Acid gas disposal: 31 acid gas  $(H_2S + CO_2)$  disposal projects in Canada associated with recovery of sour NG
- Sleipner project in North Sea: 1 MMt/y of CO<sub>2</sub> being disposed of since 1996 in aquifer under seabed

## WHAT IS IT WORTH TO FIND OUT (<u>SOON</u>!) IF GEOLOGICAL SEQUESTRATION IS VIABLE?

- Suppose that:
  - Sequestration is not viable; coal H<sub>2</sub> technology is not developed
  - $H_2$  can be produced indefinitely from abundant NG at costs for 2020 NG prices
  - Climate change concerns motivate levy of carbon tax at level sufficient to make renewable electrolytic  $H_2$  or nuclear thermochemical  $H_2$  competitive with  $H_2$  from NG with CO<sub>2</sub> venting
- What would be required carbon tax?
  - ~ \$650/tC for renewable electrolytic H<sub>2</sub> [such a tax would have increased US retail expenditures on energy almost 3X, from \$560 billion/y to \$1550 billion/y, at energy use level (97 Quads) and CO<sub>2</sub> emission level (1.52 GtC) for 1999]
  - ~ \$420/tC for nuclear thermochemical H<sub>2</sub> [which would have doubled US retail energy expenditures—to \$1200 billion/y (1999 energy use/CO<sub>2</sub> emission levels)]
- For comparison, if sequestration turns out to be viable, the carbon tax needed to induce sequestration for coal-derived H<sub>2</sub> is ~ \$50/tC for deep aquifer disposal 100 km from conversion plant [*which would have increased US retail energy expenditures 13%*—to \$630 billion/y (1999 energy use/CO<sub>2</sub> emission levels)]