Superconductivity: Challenges and Opportunities for our Energy Future

Outline

- The Energy Challenge
 - Electricity Distribution and the 21st Century Grid
- Potential for Superconductivity Solutions
 - Capacity
 - Reliability & Power Quality
 - Efficiency
 - (Superconductivity 101)
- Transformational Needs
 - Higher T_c by Design
 - Control "Vortex Matter"

"The intersection of control science with high-functioning materials creates a tipping point for sustainable energy"

The Energy Challenge

Double by 2050 Triple by 2100

Challenge for production, DISTRIBUTION, use

2100: 40-50 TW 2050: 25-30 TW

Electricity is an essential energy carrier

35% of primary energy (& growing) 34% of CO_2 emissions 63% of energy lost

The Grid - Triumph of 20th Century Engineering

Not built for 21st Century Green Energy distribution

Unprecedented 21st Century Challenges for the Grid

capacity
growing electricity uses
growing cities and suburbs
high people / power density
urban power bottleneck

2030 50% demand growth (US) 100% demand growth (world)

reliability power quality

average
power loss/customer
(min/yr)
US 214
France 53
Japan 6

\$79 B economic loss (US)
LaCommare & Eto, Energy 31, 1845 (2006)

efficiency lost energy

62% energy lost in production / delivery 8-10% lost in grid 40 GW lost (US) ~ 40 power plants 2030: 60 GW lost 340 Mtons CO₂

Superconductivity is vital to the solution of these challenges

Superconductivity: Moving Electricity Sustainably

Discovery

High temperature superconductivity 1986

Carry electricity without loss

capacity \Rightarrow high current / low voltage
5 times power in same cross section

reliability / quality \Rightarrow smart, self-healing power control

efficiency \Rightarrow zero resistance (DC)

100 times lower than copper (AC)

Barriers to Superconducting Performance

Performance Barriers

higher transition temperature - new materials higher currents - control "vortex matter"

A short detour: Defining Properties of a Superconductor

Pairing Interaction

Long-Range Quantum Mechanical Order (phase coherence)

Zero Electrical Resistance

Perfect Diamagnetism

Pairing in conventional superconductors

Electrons repel due to their electrical charge How do you "repeal Coulomb's Law"?

- First electron leaves a positive WAKE in the lattice, and
- 2. Second electron is attracted to that wake:

BCS Theory explains conventional superconductors in this framework – Nobel Prize

The paring mechanism in HTS remains elusive !!!

Gap (wave function) Symmetries

The Discovery of Superconductivity

H. Kammerlingh Onnes, 1911, Lieden

Resistance goes to zero below a Critical Temperature, Tc

Defining Properties of a Superconductor:

Perfect Diamagnetism: A magnetic field is expelled from a superconductor

This picture applies to Type 1 superconductors

-Type 2 are somewhat more complicated (and Abrikosov won a Nobel Prize)

Barriers to Superconducting Performance

Performance Barriers

higher transition temperature - new materials higher currents - control "vortex matter"

A Short History: Two Generations of High Temperature Superconducting Wire

First Generation Wire: 1G

BiSrCaCuO multifilaments
expensive materials - silver sheath
simple architecture
high anisotropy - limited pinning

1989

16 R&D

1986

HTS discovery

Remarkable progress in being made in 2G HTS wire development...

... that is impacting the grid today ...

Albany, NY

Columbus, OH

Long Island

But significant challenges remain:

10-fold increase in critical current, 10-100 fold reduction in cost

Understand and control dynamics of vortex matter, mechanism of superconductivity

Discover new materials: higher transition temperatures, lower anisotropy

Paradigm shift: superconductors by serendipity ⇒ superconductors by design

Barriers to Superconducting Performance

Performance Barriers

higher transition temperature - new materials higher currents - control "vortex matter"

Discovering the next generation of superconductors

~ 50 copper oxide superconductors

Highest Tc = 164 K under pressure

(1/2 Room Temp)

Only class of high T_c superconductors?

High T_c superconductors \geq 4 elements

55 superconducting elements

-> 55⁴ ~ 10 million quaternaries

Search strategies for new superconductors

- · Quaternary and higher compounds
 - Layered structures
- Highly correlated normal states
- · Competing high temperature ordered phases
 - ·Variable valence states

Target Properties

Higher Tc & Jc isotropy Ductility

Challenge:

Towards Room Temperature Superconductivity

Superconductors by Design

Discovery by serendipity: Hg (1911), copper oxides (1986), MgB₂ (2001), NaCoO₂: H₂O (2003)

Discovery by empirical guidelines: competing phases, layered structures, light elements, . . . B-doped diamond (2004), CaC_6 (2005)

Crystal Structure
Composition

Electronic Structure
Density functional theory

Pairing Mechanism phonons (classical BCS) spin fluctuations valence fluctuations

Composition
Superconductivity

Computationally designed superconductors

- Electronic structure calculation by density functional theory
- · Large scale phonon calculations in nonlinear, anharmonic limit
- · Formulate "very strong" electron-phonon coupling (beyond Eliashberg)
- Determine quantitative pairing mechanisms for high temperature SC

J. Mater. Chem., 2006 Computed metal hydride superconductor

Challenge:
Create a paradigm shift to superconductors by design

Barriers to Superconducting Performance

pinning defects:
nanodots, disorder,
2nd phases, dislocations
intergrowths

Performance Barriers

higher transition temperature - new materials

higher currents - control "vortex matter"

YBCO Vortex Phase Diagram

four competing energies vortex repulsion \Rightarrow lattice thermal \Rightarrow liquid pinning \Rightarrow glass layer coupling \Rightarrow line tension

Control Vortex Matter: a multi-scale challenge

Vortex:
nano-sized quantum
of
magnetic flux

Determines the full electro-magnetic behavior of superconductors

Novel Pinning Schemes

Magnetic pinning arrays

Self-assembled nano pin sites

Crossing vortex lattices

Challenge: Transformational advances in superconductor performance through vortex manipulation

Find the Superconductivity Mechanisms

Higher T_c / New Mechanisms

High temperature "fluctuating superconductivity" in the pseudo-gap region and 'normal state' vortices?

p-, d-wave Cooper pairing

Two band superconductivity

multiple pairing mechanisms

Relate superconductivity to neighboring normal phases

Find the simplifying emergent concepts

PG NFL (La,Sr)₂CuO₄

O 0.05 0.10 0.15 0.20 0.25 0.30

Hole doping

"Map the genome" of high T_c : find the controlling factors

Using new tools with unprecedented resolutions

The Multi-Functional Materials Challenge

Research Challenges

Hybrid materials for multifunctional layers

Nanoscale integration of high strength, flexibility and crystalline alignment Enhance crystalline alignment between layers without contamination Simplify layered architecture

Superconductivity - Emergent Nanoscale Science

Superconductivity arises from two emergent building blocks

H=0

Cooper pairs
Charge $2e^{-}$ Spin = 0 $\xi \sim 0.1 - 10$ nm

Vortices $\xi \sim 0.1 - 10 \text{ nm}$ $\lambda \sim 10 - 100 \text{ nm}$

"electron matter"

transition temperature
excitations, fluctuations, stability

Macroscopic Behavior 10¹⁶ - 10²³ Cooper pairs 10¹⁰ vortices

"vortex matter"
lossless / resistive current flow
electromagnetic response

ripe for nanoscale manipulation: confinement, proximity, hybrid structures, . . .

nanoscale architectures
top-down lithography
bottom-up self-assembly
multi-scale integration

characterization
scanning probes
electrons, neutrons, x-rays
smaller length and time scales

theory and modeling
multi-node computer clusters
density functional theory
10 000 atom assemblies

superconductivity embodies the frontier of nanoscale control science

Perspective

Electricity is our most effective energy carrier

· Clean, versatile, switchable power anywhere

The grid cannot meet 21st century challenges

· Capacity, reliability, quality, efficiency

Superconducting technology is poised to meet the challenge

Present generation materials enable grid-connected cables and demonstrate control technology

Basic and applied research needed to lower cost and raise performance

High risk-high payoff discovery research for nextgeneration supercondcutors

Materials discovery by design

Control vortex matter

http://www.sc.doe.gov/bes/reports/list.html

The Superconductivity Opportunity: Transform the power grid to deliver abundant reliable, high-quality power for the 21st century

"The intersection of control science with high-functioning materials creates a tipping point for sustainable energy"