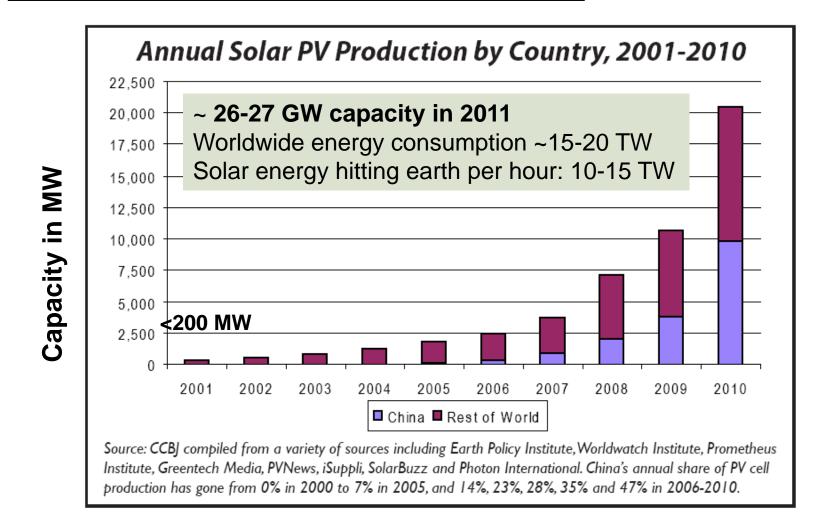
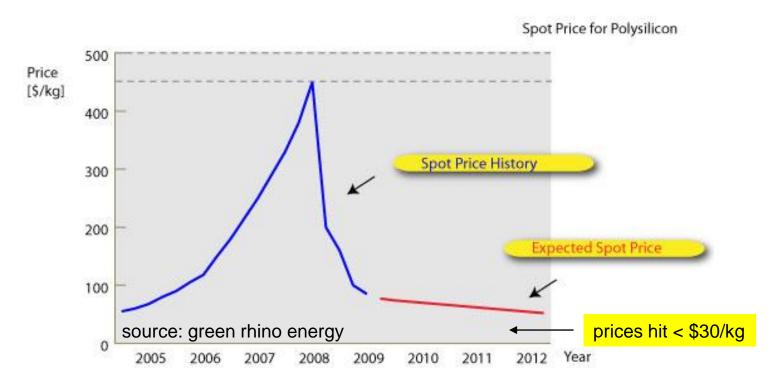
SiOnyx, Inc.

James Carey – Feb 26th 2012

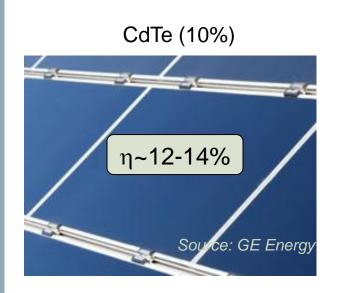


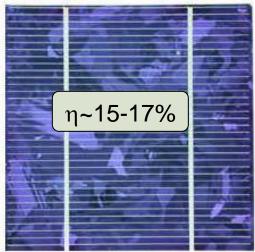
The winding road from researcher to entrepreneur – photovoltaics

- SiOnyx is a Boston area startup founded in 2006
 - venture backed, materials based university spinout
 - laser modification of materials
 - high broadband quantum efficiency in thin layers of silicon
 - photodetectors and image sensors
 - photovoltaics
 - more later...
- photovoltaics industry
 - backdrop and barriers to entry
 - the role of technology/research in
 - evolutionary or revolutionary?
- lessons learned, challenges ahead
 - transitioning lab technology to product
 - entrepreneur or academic?

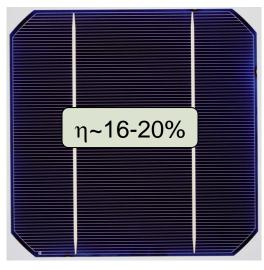

Photovoltaic industry - rapid growth

solar photovoltaic industry is now over \$80 **B** worldwide


Photovoltaic industry – poly feedstock prices


- rapid startup proliferation in 2006/07
- predicated on need for silicon alternatives
- silicon drops like a rock economy and added capacity
 - China employs a low-tech brute force approach
 - proven technology hard to dislodge in commodity markets

Photovoltaic industry - today



Typical cell efficiencies (2009 market share)

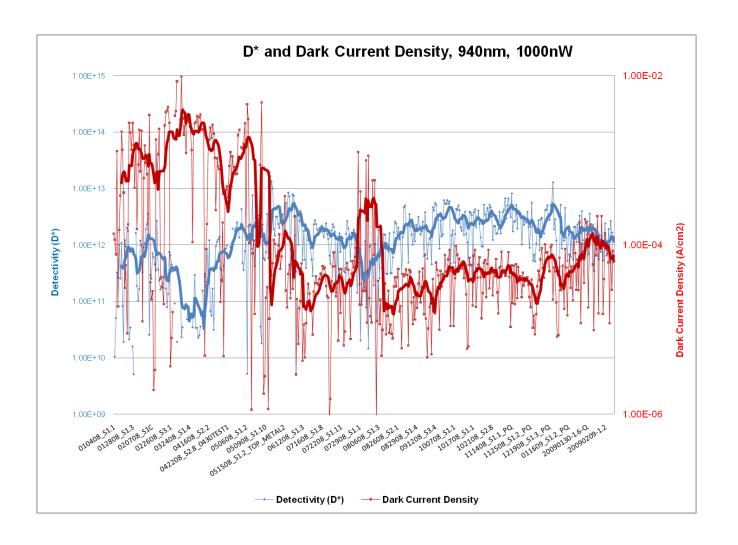
Monocrystalline Si (36%)

Role of technology

- can university research help?
 - recent advancement of plain old vanilla silicon solar cells is entirely dependant on past academic work
 - UNSW, NREL, Georgia Tech, etc
 - just took some time for things to make it from the lab to the fab
- taking the long-view
 - technology improvements often require industry wide adoption
 - downstream supply chain compatibility
 - need to understand the requirements of the established infrastructure
 - well suited for academic/industrial collaboration
 - story for thin film technology isn't over but...
 - expectations need to be set correctly
 - this is a commodity market and evolution is historically more successful than revolution
- how you view the technology will impact the available capital

Advice and approach

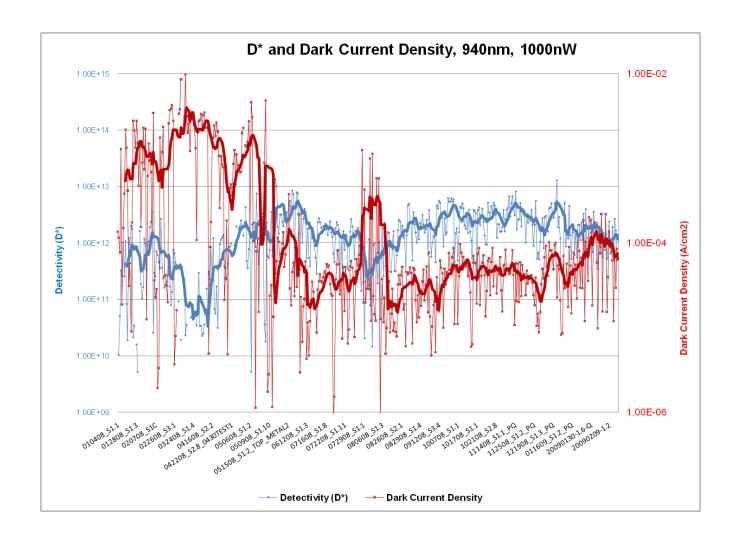
- get connected with industry professionals
 - academia has a way of being insular and far reaching (timewise)
 - industry often does not know about available solutions
 - understand discrete pain points
- take advantage of the growing number of bridge institutions
 - ISC Konstanz, Fraunhofer, SVTC solar (coming online soon), centers of excellence
- consider collaboration or internship at a large corporation
 - sometimes difficult while in academia, but the experience is valuable
 - DO NOT worry about direct correlation to your research
 - getting a broader view is always a good thing
- process innovation is underappreciated
 - physics changes slowly, implementation changes rapidly


Going from lab to fab

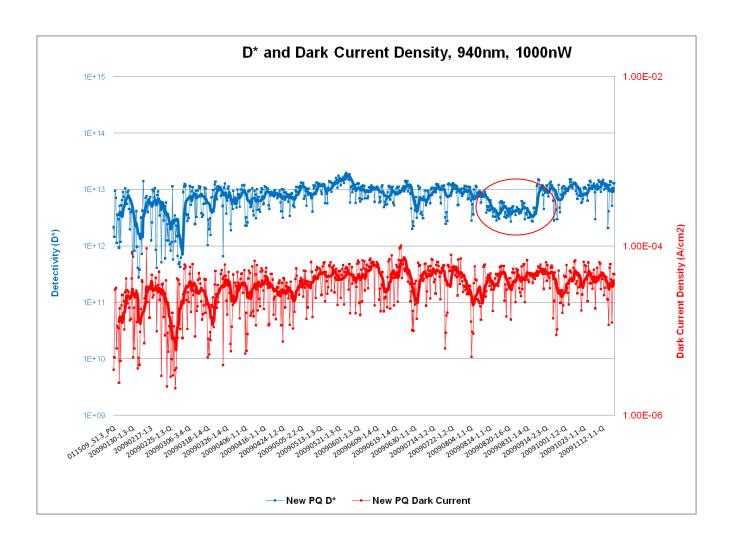
- startups face all kinds of challenges
 - raising capital, hiring team, understanding opportunity...
- one of the most difficult for a young company is how to best mature a lab based technology
- where are we on the path to product, what market?
 - in all companies this is an evolving question, but in energy alternative applications it's even more important
- when to invest in taking the next big step?

Common questions

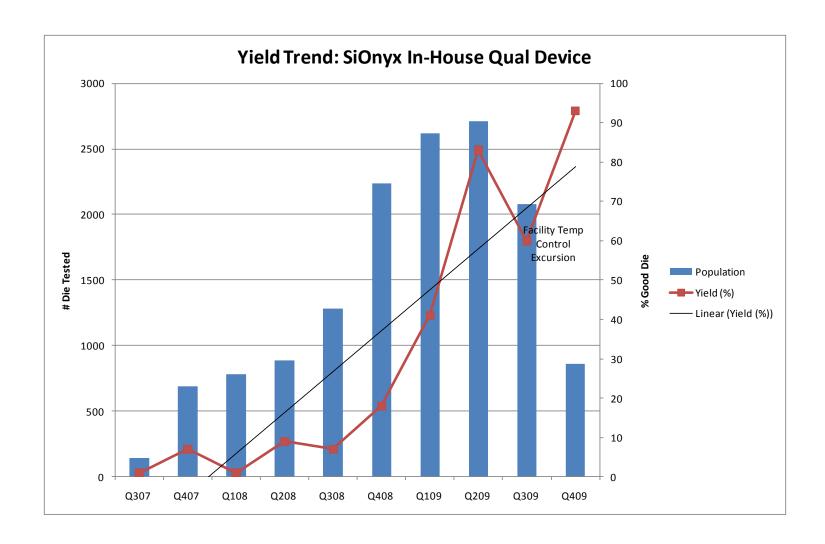
- how many have you made?
- what factors impact your process?
- can't lock down a process now, need to make progress!

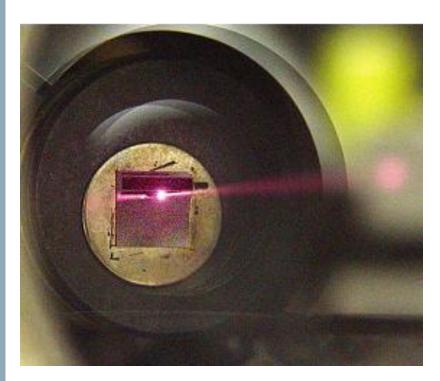

A controlled environment

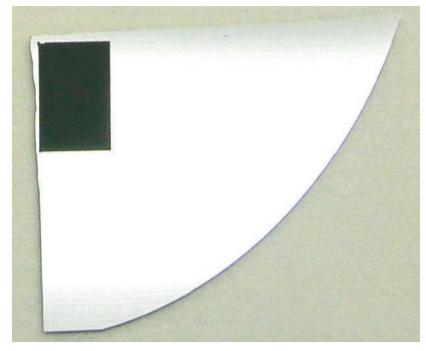
statistical process control: maintain a program providing maximum control with minimum investment of time & money; focus on upstream control of material, equipment & processes and establish predictive measures correlated to device performance.


elements:

- supply chain established; substrate specification & tier1 supplier; semiconductor grade materials from qualified suppliers; batch qualification procedures; outsourced elements of device fabrication
- laser equipment monitoring
- cleanroom environment for all process steps
- in-line analytical analysis and metrology
- database for inline and device test data
- controlled documentation system
- development of correlations of inline measurements to device performance

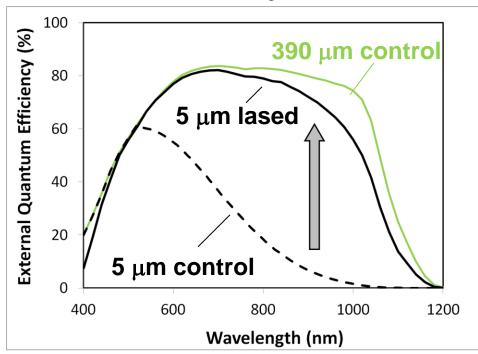


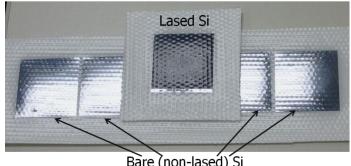

Stepping up to manufacturing maturity


- often hard to understand the benefits for an early process
 - increased expense
 - "we need to finish development on a smaller scale"
- increased speed of learning is invaluable
- need to know your limitations early
 - process integration challenges
 - 90 percent of your development challenges are ahead of you
- getting into the true manufacturing environment will illuminate your strengths and weaknesses

SiOnyx beginnings and black silicon

- femtosecond laser processing of silicon (Harvard)
 - enhanced and extended absorption
 - doping with ambient chemical species



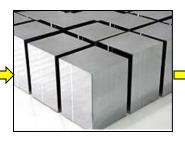


SiOnyx technology

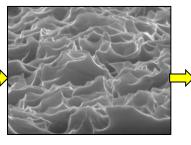
QE Boost in Crystalline Si

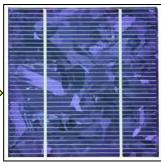
Lower Reflectance

Bare (non-lased) Si


Laser textured

- improves QE, not just absorptance
 - outstanding light trapping and ability to usefully extract carriers
 - make very thin Si (cheap, fast response time, low noise) appear optically thick
- dramatically reduce surface reflectance to couple more light in
 - minimal material removal and shallow topography, critical for thin Si devices
 - independent of crystal orientation




Multicrystalline Si PV Cell Process Flow

Poly-Si

- Raw material
- Melted to form ingot

Bricking

- Ingot is sliced into bricks (156 mm)

Wafering

 Bricks are sliced into individual wafers

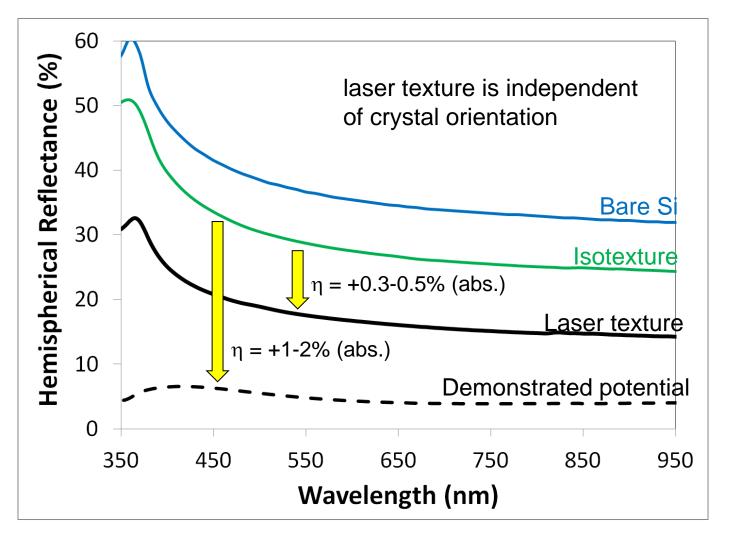
Texturing

 Chemical saw damage removal and surface texturing

Cell Processing

 Remaining steps (emitter, ARC, metal, etc.)

- silicon PV wafers require surface texture for good light absorption
- multicrystalline PV wafers combine saw damage removal and surface texturing steps = "isotexture"
 - HF/HNO₃-based etch that forms texture as it etches saw damage
 - process is not optimized for either step: leaves some residual saw damage (lowers efficiency) and texture reflectance is not good (high)
 - isotropic etch required due to multiple crystal grain orientations
- better solution: separate saw damage removal (etch) and texture (laser)


Benefits of laser texture

	Isotexture	Alkaline texture	SiOnyx laser texture
Decouple saw damage removal and texture processes to maximize V_{oc} and J_{sc} ?	Not separable	✓	✓
Low reflectance?	22+% refl. pre-ARC	✓	✓
Fast / inline?	✓	Too slow for inline	✓
Robust features, <1 μm height?	Deep saw damage holes	Pyramids 3-10 μm	✓
Consume <2 µm of Si to form texture?	Consumes 4+ μm	Consumes 10+ μm	✓
Independent of grain orientation?	✓	Only suitable for (001) surfaces	✓

- open-air, high-throughput ultrashort pulse laser process
- compatible with p-type and n-type Si
- complementary to all other efficiency boosts (selective emitter, advanced metal pastes, backside passivation / local contacts, etc.)
- superior light trapping enables thinner wafers with high efficiency
- minimal material removal key for ultra-thin films

Spectral reflectance

lower surface reflectance boosts PV cell current and efficiency

Enhanced thin layer quantum efficiency

- silicon is an indirect bandgap semiconductor
 - necessitates a thick layer for absorption of NIR wavelengths
- thin, flexible or BIPV applications enabled with high efficiency
 - reduced material costs, weight, balance of system costs
- monolithic silicon sensors have low response at wavelengths greater than 850 nm (CMOS or CCD)
 - device layer is typically thin epi layer (< 10 um)
 - pixel designs limit applied bias and depletion width
 - thicker layers are difficult to deplete
 - electrical cross talk increases with thickness
 - hybrid solutions cannot take advantage of 4T architectures
 - leads to higher dark current

black silicon imagers – security and DoD apps

- image sensor in typical security/surveillence conditions
 - black silicon enhanced QE provides 4x SNR in NIR

standard CMOS

SiOnyx imager

Summary – Thank you!

- SiOnyx has been able to grow with VC funding AND organic growth with government funding in PV
- PV ante is huge
 - > \$200M to get started with a run-of-the-mill multicrystalline fab
 - margins are extremely difficult to come by
 - if you are startup minded not so bad to target a smaller company
- successful alternative technology companies are "old" by startup standards
 - First solar was doing CdTe in the 80's used to be a glass company
- however
 - market is still growing and is not going to go away
 - socially or economically
 - current market dynamics driving consolidation are healthy
 - differentiation is hard to come by and will be valued in a mature market
 - you never know...
- stay motivated and involved and take the long-view