

Alternative Energy Vehicles Challenges and Opportunities

Chris Gearhart APS March Meeting Energy Research Opportunities Workshop March 2, 2014

Historical Perspective on Energy

"We are like tenant farmers, chopping down the fence around our house for fuel, when we should be using nature's inexhaustible sources of energy – sun, wind and tide. . . . I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait till oil and coal run out before we tackle that."

Thomas Edison
Speaking with Henry Ford and Harvey Firestone,
1931

Source: Uncommon Friends: Life with Thomas Edison, Henry Ford, Harvey Firestone, Alexis Carrel & Charles Lindbergh, James Newton, 1987, pg. 31

Thomas Edison and electric car. *Photo: Courtesy of National Museum of American History, Smithsonian Institution*

Climate Change Mitigation

Category	CO ₂ concentration at stabilisation (2005 = 379 ppm) ^b	CO ₂ -equivalent concentration at stabilisation including GHGs and aerosols (2005=375 ppm) ^b	Peaking year for CO ₂ emissions ^{a,c}	Change in global CO ₂ emissions in 2050 (percent of 2000 emissions) ^{a,c}	Global average temperature increase above pre-industrial at equilibrium, using 'best estimate' climate sensitivity ^{d,e}	Global average sea level rise above pre-industrial at equilibrium from thermal expansion only ^f	Number of assessed scenarios
	ppm	ppm	year	percent	°C	metres	
1	350 – 400	445 – 490	2000 – 2015	-85 to -50	2.0 – 2.4	0.4 - 1.4	6
П	400 – 440	490 – 535	2000 – 2020	-60 to -30	2.4 – 2.8	0.5 – 1.7	18
III	440 – 485	535 – 590	2010 - 2030	-30 to +5	2.8 – 3.2	0.6 – 1.9	21
IV	485 – 570	590 – 710	2020 - 2060	+10 to +60	3.2 – 4.0	0.6 - 2.4	118
V	570 – 660	710 – 855	2050 - 2080	+25 to +85	4.0 - 4.9	0.8 - 2.9	9
VI	660 – 790	855 – 1130	2060 – 2090	+90 to +140	4.9 – 6.1	1.0 – 3.7	5

Source: Intergovernmental Panel on Climate Change Fourth Assessment Report, Climate Change 2007 (Synthesis Report)

U.S. GHG Emissions Reduction Target

GHG Projections by Transportation Market Segment

Source: Melaina, M.W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K.W. (2013). *Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios.* Transportation Energy Futures Series.

Implications for Vehicles

Divide the problem into three pieces:

- 1. Energy consumption of the vehicles
- 2. Carbon intensity of the energy source
- 3. Distance driven

$$\left(\frac{\text{Energy}}{\text{Distance}}\right) \left(\frac{CO_2}{\text{Energy}}\right) \text{Distance} < CO_2 \text{ Target}$$

$$\left(\frac{\text{Energy}}{\text{Distance}}\right) \left(\frac{CO_2}{\text{Energy}}\right) < \frac{CO_2}{\text{Distance}}$$

Emission Reduction Targets

CO₂ Emission Target

- 540 million metric tons for entire transportation sector
- Assume light-duty vehicles (LDVs) get same percentage of budget in 2050 as in 2005 (~57%)
- 308 million metric tons (3.08 x10¹⁴ g).

Vehicle Miles Traveled (VMT)

- Business-as-usual (BAU) VMT continues to increase.
- Estimate about 8 x 10¹² kilometers by 2050.

Emissions per Kilometer — 38 g/km.

What Does the Solution Look Like?

Low-Carbon Energy Carriers

Only Three Options

Hydrogen generated from renewable sources, or fossil sources combined with carbon sequestration.

electricity generated from renewable sources, or fossil sources combined with carbon sequestration.

Three Pathways

- Figure shows rough estimates of energy consumption potential of each pathway
- Does not show the carbon intensity of each pathway.

How Long Will it Take to Replace the U.S. LDV Fleet?

Photo: Warren Gretz/NREL

How Long Will it Take to Replace the U.S. LDV Fleet?

240 Million LDVs

2050 GHG target is really a 2035 technology target.

16 Million Sales/Year

15 Years to Replace LDV Fleet

Photos (left to right): Ken Kelly/NREL, Willie B. Thomas/iStock, Dennis

Strategies

Reduce VMT

Mass transit, rideshare, telecommute, walk, bike.

Improve Vehicles

- More efficient vehicles
 - Aerodynamics
 - More efficient transmission
 - Electrify auxiliaries (A/C, steering, water/oil pumps)
- Reduce vehicle mass
- Very efficient internal-combustion engines (ICEs)
- Conventional powertrain to hybrid electric vehicle (HEV) to plugin-hybrid electric vehicle (PHEV) to fully electric vehicle (EV).

Shift to Renewable Energy

- Biofuels
- Renewable hydrogen
- Renewable electricity.

Vehicle-Level Research Opportunities

- Hydrogen fuel cell electric vehicles
- Battery electric vehicles
- Biofuel combustion/ICE efficiency improvement
- General vehicle energy consumption reduction
- Transportation system efficiency gains

Hydrogen Fuel Cell Electric Vehicles

Fuel Cell Market Overview

Market Growth

Fuel cell markets continue to grow 48% increase in global MWs shipped 62% increase in North American systems shipped in the last year

The Market Potential

Independent analyses show global markets could mature over the next 10–20 years, producing revenues of:

- \$14 \$31 billion/year for stationary power
- \$11 billion/year for portable power
- \$18 \$97 billion/year for transportation

Several automakers have announced commercial FCEVs in the 2015-2017 timeframe.

Source: S. Satyapal, 2013 DOE AMR

 $http://www.hydrogen.energy.gov/pdfs/review12/joint_plenary_satyapal_2012_o.pdf$

Fuel Cell Costs Are Dropping

Projected Transportation Fuel Cell System Cost

-projected to high-volume (500,000 units per year)-

Source: DOE

https://www1.eere.energy.gov/hydrogenandfuelcells/accomplishments.html

Total Cost of Ownership for Future LDVs

Multiple technologies are cost competitive, supporting portfolio approach.

- Analysis project in collaboration with the Vehicle Technologies Office
- Vehicle life cycle costs updated based on stakeholder input received from 2011 RFI

Common Assumptions

- 15-year ownership
- 10,000 miles per year
- 7% discount for annual fuel costs
- 0 resale value at the end of 15 years

Vehicle Types

2012 Spark ignition (SI): Current gasoline car

Adv SI ICEV: 2035 gasoline car

Adv Compression ignition (CI): 2035 diesel car

Adv NG SI ICEV: 2035 natural gas car Gasol HEV: 2035 hybrid electric car SI PHEV10: 2035 gasol PHEV10 SI EREV40: 2035 gasol EREV40 FCEV: 2035 fuel cell hybrid electric car BEV100, BEV300: 2035 battery electric cars

Error Bars

<u>Green:</u> range of assumptions for fuel prices (EIA projections for fuels other than hydrogen; hydrogen range: \$2.50 - \$5.00 per kg)

Red: range of assumptions for technology success.

See record:

http://hydrogen.energy.gov/pdfs/13006 ldv life cycle costs.pdf

Fuel Cost in \$/gge (¢/kWh) \$2.50, \$3.50, \$5.00 \$3.94 (11.7¢), \$3.98 (11.8¢), \$4.01 (11.9¢)

Source: F. Joseck, 2013 DOE AMR

http://www.hydrogen.energy.gov/pdfs/review13/2013 h2 amr plenary analysis joseck.pdf

Barriers to Implementation

Cost

Mostly due to catalyst activity.

Durability

Mostly due to catalyst durability.

Hydrogen storage energy density

Cost and durability are linked.

What improves one tends to make the other worse.

Polymer Electrolyte Fuel Cell R&D Needs

Electrocatalysis

- Low platinum (Pt)
- Non-precious.

Alkaline Membrane Fuel Cells

Electrodes

Membranes

NREL R&D focus is heavily directed towards critical materials needs and novel materials development, with a specific focus on electrode design and fabrication. The primary goal is to reduce Pt, make systems higher performing and more durable.

Hydrogen Storage System Status

Solid/Condensed State Storage

Physical Storage-Compressed Gas (350-700 bar), Cold Gas, or Liquid

- Known technology and infrastructure
- High-pressure operation
- High material costs for storage vessel
- Low volumetric capacity.

Solid/Condensed State Storage-Metal Hydrides, Chemical Hydrides, and Adsorbents

- Low-pressure operation
- Ambient storage temperature
- High hydrogen capacity
- Fluid phase or solid phase
- Flexibility of material space
- Lower cost?

Solid/Condensed State Storage

Three Material Classes: Chemical Hydrides, Metal Hydrides, and Adsorbents

Battery Electric Vehicles

Barriers to Implementation

EV Battery Development Challenges

- Cost
- Lifetime
- Energy density
- Power
- Infrastructure/charger access
- Safety.

Reducing Battery Size & Cost

EV Battery Choices: Energy and Power

Figure: DOE

DOE GOALS:

Reduce Battery Cost from \$1,000/kWh to \$150/kWh by 2020 Batteries 1/2 Today's Price in 2015, 1/4 Today's Price in 2020

Progress:

- 35% reduction in HEV/PEV battery cost
- 50%-100% more energy capacity.

Battery Materials and Synthesis Process

 Improved Li-ion electrode durability with interface modification using atomic layer deposition coatings

 Developing high-capacity silicon anodes stabilized with molecular layer deposition coatings

Polysiloxane ALD coating

 Demonstrated difficulty in moving electrons across the peroxide barrier in Li-Air batteries; investigating potential modifications to the oxide layers to overcome this issue.

ABR Program

Applied Battery Research for Transportation

BATT Program

Batteries for Advanced Transportation Technologies

Density of states of Li₂O₂ projected to O₂ orbitals

Density of states of Li₂O₂ projected to O₂ in four layers.

Multi-Physics Battery Modeling

NREL has developed a unique set of multi-physics, multi-scale modeling tools for simulating performance, life, and safety of lithium ion batteries.

Biofuel ICE Vehicles

Barriers to Implementation

- Suitable biofuels
- Very efficient internal combustion engines.

Percent of Fuel Energy - Peak Engine Efficiency

Percent of Fuel Energy - Road Load

Source: NREL/DOE

Strategies for Increasing ICE Efficiency

Percent of Fuel Energy - Peak Engine Efficiency

Source: NREL/DOE

Maximize Brake Work

$$W = \Delta(PV)/(1-\gamma)$$

- Increase work by
 - Increasing change in pressure and volume
 - Increasing gamma
- Increase compression ratio
- Over-expanded cycle (Atkinson cycle)
- Turbocharging
- Fuel selection to provide high gamma

Research Opportunities

- Advanced materials that can withstand high temperatures
 - Reduces the amount of heat that has to be extracted through coolant.
- Advanced combustion techniques
- Exhaust energy recovery
 - Efficient turbo machinery
 - Thermo-electrics

Research challenges for internal combustion engines

- Efficiency can be increased with high pressure, low temperature combustion, using high compression ratios, boost, lean mixtures, and dilution...
 - But these make ignition control difficult, so technologies such as plasma ignition may be required
 - Other strategies rely on controlled autoignition through chemical kinetics

Image sequence from U. Michigan, M.S. Wooldridge research group, http://www-personal.umich.edu/~mswool/researchimagelibrary.htm

Research challenges for internal combustion engines

- Computational models must be improved to simultaneously study reacting flows with fluid dynamics and chemical kinetics
 - Fuel spray dynamics
 - Fundamental understanding of flame structure

Matsumoto, et al., Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector SAE 2010-01-0601

Research challenges

Research challenges for internal combustion engines

Two key combustion challenges at the atomic or molecular level:

- Ignition / control of the combustion system
- Minimizing harmful emissions (NOx, soot, HCs)

Understanding the chemical kinetic mechanisms for thousands of fuel molecular compounds is a massive challenge

Photos by Dennis Schroeder, NREL

Vehicle Efficiency

Vehicle Efficiency: Where Are the Losses?

Power Required to Move the Vehicle

- Inertia reduce vehicle mass
- Overcome aerodynamic drag reduce drag coefficient of frontal area
 - Front, back, sides, mirrors, wipers, underbody
- Lower tire rolling resistance
 - Need to turn and stop

Engine Losses

- Improve combustion efficiency, reduce pumping losses and friction
- Operate only at higher efficiencies
 - Downsize engine
 - Deactivate cylinder
 - Reduce transients through load leveling hybridizing

Other Loads

- Reduce auxiliary loads (climate control/defrost, informatics, entertainment, wipers, lights, steering, etc.)
- Improve efficiency of ancillary equipment (oil/water pumps, radiator fans, alternator)

Reclaiming Lost Energy

- Use regenerative braking to reclaim kinetic energy lost as heat through braking
- Recover heat exhaust gases or engine coolant
- Use turbochargers recover pressure in exhaust stream.

Vehicle Losses: City Driving

Energy Requirements for City (Stop and Go) Driving

Idle Losses: 6%

In this figure, they are accounted for as part of the engine and parasitic losses.

Illustration courtesy of U.S. Department of Energy http://www.fueleconomy.gov/feg/atv.shtml

Vehicle Losses: Highway Driving

Energy Requirements for Highway Driving

Idle losses: 0%

Highway driving does not include a significant amount of idling.

Illustration courtesy of U.S. Department of Energy http://www.fueleconomy.gov/feg/atv.shtml

Vehicle Losses: Comparison

Energy Requirements for Highway Driving

Illustration courtesy of U.S. Department of Energy http://www.fueleconomy.gov/feg/atv.shtml

Highway driving does not include a significant amount of idling.

Vehicle Losses: Opportunities

Illustration courtesy of U.S. Environmental Protection Agency

Nissan Leaf Motor: Cooling Challenges

Photos by NREL

Typical Channel Flow Cooling for an Inverter

2007 Toyota Camry

Jet Impingement in a Plastic Heat Exchanger

Prototype inverter-scale heat exchanger

- Reduced thermal resistance
 ~20% for same pumping
 power
- Increased coefficient of performance
- 50% weight reduction of the heat exchanger.

Photos by NRE

Two-Phase Heat Transfer Surface Enhancement

- Passive boiling increases heat transfer coefficient up to 350%
- Simple means to increase power density of electronic devices.

Pool boiling heat transfer coefficients for microporous coated and non-coated surfaces

Reducing Electric-Drive Vehicle Climate Control Loads

R&D Solutions Leading to 54.5 MPG

- Degree of electrification (power electronics and energy storage)
- Start/stop
- Regenerative braking
- Low rolling resistance tires
- Electric powered steering
- Electric infrastructure
- Light weighting
- Batteries and cooling systems
- Turbo-charging, direct fuel injection, advanced combustion, 8-speed transmissions
- Variable cylinder management
- Improved aerodynamics
- Diesel, alternative fuels, hydrogen, etc.

Transportation System Efficiency

Potential Energy Impact of Autonomous Vehicles

- Better (cheaper/smaller) sensors
- Wireless power transfer.

Other Options: Transit Modes, Etc.

Photo: Dennis Schroeder/NREL

Multi-mode
Mass transit
Bicycle
Walkable communities
Mode Shifting &
Telecommuting

Photos (top to bottom): Santa Barbara Metro Transit, Dennis Schroeder/NREL, AeroVironment

Thank You

Questions

Chris Gearhart Chris.Gearhart@nrel.gov

Learn more at www.nrel.gov/vehiclesandfuels www.nrel.gov/hydrogen

Photo: Steve Allen