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What is Carbon Dioxide Capture and
Storage and Why is it Important?

Carbon dioxide capture and storage technology can reduce carbon
dioxide emissions into the atmosphere from using fossil fuels

More than 80% of today s energy comes from fossil fuels and a rapid
transition to low carbon energy sources is difficult and expensive

Necessary to achieve large and rapid carbon dioxide emission
reductions



CCS Can Reduce Emissions
from Many Sources

BRI

7,400 sources greater than 0.1 Mt /yr
CCSis dpplicable to the 600/0 “ Electricity-Coal

of CO, emissions which come = Electricity-Gas
v Electricity-Fuel
oil
“ Cement

“ Refining

from stationary sources such

as power plants, cement plants '
and refineries.



CCS Continues to Expand Worldwide
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DeConninck and Benson, 2014. Annual Reviews in Energy and Environment.



Gt CO,

CCS Is Expected to Contribute About 20%
to Needed CO, Emission Reductions
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B Muclear 6% N End-use fuel and electricity efficiency 38%

Source: IEA, 2010.



CCS is an Efficient Means of Large
Emission Reductions

One 1,000 MW coal-fired

power plant (~6.5 MT 2.8 Million Cars
CO,/year) (10% of California Fleet)

CCS dramatically reduce the number of actors needed to achieve large
emission reductions.



CO, Capture and Storage Involves

Four Steps




Post-Combustion Capture

A7,
:Turbine:ﬂ ‘%

=

74 I \\ Electricity
Nitrogen
Wy o + Water
Carbon dioxide + Nitrogen + Water Chemical

wash

CO, is captured
after fuel has been burned

Compressed
and dehydrated

Transport
and storage

Image after ZEP @




Oxy-Combustion
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Pre-Combustion Capture
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Post-Combustion Absorption
Capture
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The World’s First Power Plant with CO,
Capture and Storage

2015 Briefing to Bank of America



Comparison of Capture Options

Technology Advantages

Pre- * Lower costs than post-
Combustion combustion

(IGCC) « Lower energy penalties (10-
15%)

e H, production

Oxygen- * Avoid complex post-
Combustion combustion separation

* Potentially higher generation
efficiencies

Challenges

« Complex chemical
process

* Repowering

e Large capital
iInvestment

*Oxygen separation

*Repowering




Cost and performance of today s capture

technology
-

7 Energy penalty: 10 to 30%

1 Cost
O $60 to $110/tonne CO, for the n™ plant

O Significantly more for the 1% plants ($150 to $250/tonne
co,)

O Cost of electricity generation: 50 to 100% increase
11 Uncertain reliability

1 R&D needed do develop new options and improve
existing ones
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Advanced Materials and Processes
for CO, Capture

Separation Absorption Adsorption Cryogenic Membranes Mineralization
Approach

Example
Materials

Advantages

Technological
Challenges

Aqueous amine
solutions

Chilled
ammonia

lonic liquids
Numerous
solvent options

Rapid
improvements
in energy
requirements
achieved
Reducing energy
for regeneration

Solvent
degradation

Zeolites

Metal organic
frameworks (MOFs)

Activated carbon
Potentially lower

energy requirements
for regeneration

Adsorption capacity
and kinetics

No specific
material
requirements

Avoid need for
solvents or
sorbents

Lower energy

requirements

Solid separation
and handling

Polymer
membranes

Inorganic
membranes

Avoid
regeneration
energy
requirements

Permeability
Selectivity

Magnesium
silicates

Alkalai-rich waste
streams

CO, is converted to
a solid substrate
that can be reused
as a building
material or
disposed of in
surface facilities

Rate of reactions
Large mass of

reactants (e.g.
source of Mg, Ca)
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Presentation Notes
Ionic liquids – organic and amonia based componds that form liquids at moderate temperatures. Examples of organic compounds include Imadazolide salt componds. Typical formula (CH)2N(NH)CH+Na.

Metal organic frameworks.  Metal atoms coordinated with rigid organic models that form 1, 2 or 3 dimensional surfaces. Have strong afinity for CO2(up to 10%) – depending on metal molecule, structure of MOF. Also, can release CO2 at comparatively low temperatures.


What Do You do with the CO,

Once it’'s Captured?

1 Underground injection for
sequestration or CO,-EOR

OR

11 Reuse for producing fuets,
chemicals, or services

Overview of Geological Storage Options

1. Depleted oil and gas reservoirs
2. Use of CO; in enhanced oil and gas recovery

3. Deep saline formations - (a) offshore (b) onshore

4. Use of CO, in enhanced coal bed methane recovery -
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Potential for CO, Reuse in the
Chemical Industry is Extremely Limited

Estimate +13% for GWe if equimolar
Rank Chemical 2002 Production 2007 rxn with CO2
Mt * Mt Gmol 90% capture
1 Sulfuric Acid 36.65 41.54 423.54 2.74
2 Nitrogen 30.76 34.87 1244 65 8.06
3 Ethylene 23.67 26.83 838.44 543
4 Oxygen 22.04 24 .98 890.27 5.76
5 Lime 18.42 20.87 372.24 2.41
6 Polyethylene 16.06 18.20 568.91 3.68
7 Propylene 14.46 16.38 380.27 2.46
8 Ammonia, Anydrous 13.20 14.96 878.51 5.69
9 Chlorine 11.39 12.91 182.02 1.18
10 Phosphoric Acid 10.81 12.26 125.06 0.81
95 Sodium Bicarbonate 0.54 0.61 7.24 0.05
96 Cyclohexanone 0.54 0.61 6.19 0.04
a7 Propylene Glycol 0.53 0.60 7.92 0.05
98 Phthalic Anhydride 0.53 0.60 4.03 0.03
99 Sodium Sulfate 0.51 0.58 4.06 0.03
100 Potassium Hydroxide 0.47 ) 54 9.55 006
TOTAL 44308 (50216 10339.12

Global top 100 chemicals produce a total of 0.5 Gt/yr; CO, emissions are
35 GT/yr. Therefore, opportunities for CO, reuse in the chemical industry
are limited. Fuels are the best option for CO, reuse at scale.

From Abhoyjit S. Bhown, EPRI, 2009
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• The next hurdle is to find a way to make carbon monoxide from something other than fossil fuel, the primary source today. Kanan envisions a two-stage process. First, develop an electrocatalyst that converts atmospheric CO2 to carbon monoxide. Then use the oxide-derived copper catalyst to convert the carbon monoxide to a liquid fuel. Any CO2 released into the atmosphere during fuel combustion would be re-used to make more carbon monoxide and more fuel – a closed-loop, emissions-free process. 

• Ultimately, Kanan would like to see a scaled-up version of the catalytic cells powered by electricity from the sun, wind or other renewable resource. 

http://www.nature.com/nature/journal/v508/n7497/full/nature13226.html
-without-corn-or-other-plants


Catalysts are the Key for CO,, Reuse

Matthew Kanan, Christina Li * Novel copper oxide derived catalyst converts
Chemistry

carbon monoxide (CO) to ethanol and acetate

at room temperature
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• Chemist Matt Kanan and graduate student Christina Li have developed a novel, highly efficient way to produce liquid ethanol from carbon monoxide gas using electrocatalysis. (also – ethene (C2H4) and ethane (C2H6) and small amount of propane (C3H8)

• This promising discovery requires no fermentation and offers an eco-friendly alternative to conventional ethanol production from corn, sugar cane and other crops. The results were published last month in the journal Nature. 

• Two years ago, with support from a Precourt Institute seed grant, Kanan created a novel catalyst made of oxide-derived copper. Unlike conventional copper, the new catalyst consists of a continuous network of copper nanocrystals with well-defined grain boundaries. 

•In the Nature study, a small voltage was applied, with dramatic results: The oxide-derived copper produced ethanol and acetate with 57 percent faradaic efficiency – a more than 10-fold increase in efficiency over conventional copper catalysts. Kanan says that the unique nanocrystalline network of oxide-derived copper may be critical for the catalyzing ethanol, propanol and other fuels. 


https://energy.stanford.edu/news/scientists-discover-novel-way-make-ethanol-without-corn-or-other-plants


CO, Capture and Storage Involves

Four Steps




Options for Geological Storage

Overview of Geological Storage Options

1. Depleted oil and gas reservoirs
2. Use of CO; in enhanced oil and gas recovery
2 _’Deep sal' formations - (a) o_ffshore (b) onshore

== Produced oil or gas
= |njected COZ
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Example of a sedimentary basin with alternating layers

2 of coarse and fine textured sedimentary rocks.



Storage Prospectivity

@@ Highly Prospective
Prospective

Non=prospective 3.000 -:f?

— 0 2

From Bradshaw and Dance 2005



Phases of CO,, for the CCS System

Carbon dioxide: Temperature - pressure diagram

100.000,0
E Me\{mg\\ﬂe
1000,0 +
: CO, Liquid
— 100,0+ C02 Solid Storage
1] r
a C . \ine Critical Point
o - gaturatiol e
I
o
o
10,0—5
I Triple Point
CO, Gus e
~r Sublimation
- Point
O,‘I \IIIIIIIIII\HIIIIIIIIIIIIH\IIIIIIIIII}IIIIIIIIII\I\IIIIIIIIII\I\IIIIIIIII\IHIIIIIIIIII}IIIIIIIIII\I\IIIIIIIII\I\I\IIIIIIII\I\IIIIIIIIIII}IIIIIIIII

-100 -90 -80 =70 -60 =50 =40 =30 =20 -10 0 10 20 30 40 50

Temperature (°C)



25

Basic Concept of Geological Storage of CO,

11 Injected at depths of 1 km or deeper into

with tiny pore spaces

o Primary trapping

O Beneath seals of low permeability rocks

injection stops

€

~1-10 km

homogeneo
reservoir

>

Courtesy of John Bradshaw

Image courtesy of




Secondary Trapping Mechanisms
Increase Over Time

01 Solubility trapping

Structural &
stratigraphic

O CO, dissolves in water trapping

01 Residual gas trapping

O CO, is trapped by
capillary forces

71 Mineral trapping

O CO, converts to solid Solubility

. trapping
minerals

11 Adsorption trapping

1 10 100 1,000 10,000
O CO, adsorbs to codl _ S
Time since injection stops (years)



Sleipner Project, North Sea

- 1996 to present
- 1 Mt CO, injection/yr

- Seismic monitoring

Sleipner T

Sleﬂiner :
édoense

%/

Utsira formation
(800 - 1000m depth)

Sleipner East
- Production and injection wells

Courtesy Statoil




Seismic Monitoring Data From Sleipner,

Norway
_

From Chadwick et al., GHGT-9, 2008.



Key Elements of a Geological Storage
Safety and Security Strategy

“ With appropriate site selection Financial “'“, r.is.ks similar to existing
informed by available subsurface R - activities such as natur al gas
information, a monitoring program esponsibility storage and EOR.

to detect problems, a regulatory “ b frocti tained i
system, and the appropriate use of Regulatory Oversight likal fe ac :oorlw 5e9$ne o
remediation methods...” 7’ Sgooy:g::s 0 over

Contingency Planning

and Remediation

Safe Operations

IPCC, 2005

Storage Engineering

Site Characterization
and Selection

Fundamental Storage
and Leakage Mechanisms
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Core-Flood Visualization Lab

X-Ray CT Imaging High Pressure Core Holder

core holder

two-phase
separator

CO2 Cylinder

Continuous Flow Core-Flooding Apparatus




CO, Saturations are Highly Variable

Porosity

5.08 cm
——

i——

L
el

15.24 cm

Saturation Distribution

100% CO,

1.7 ml/min
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Capillary Pressure Curve Heterogeneity Causes

CO, Saturation Variations

Constant Pc

Constant Pc

Constant Pc

Various Pc

Scog =24 38%

SCOZ =2 ]. . 24':%]

Unique capillary pressure curves are needed to
‘ create spatial variations in CO, saturation.

C-W Kuo, J-C Perrin, and S. M. Benson, 201 1. Simulation studies of effect of flow rate and small scale
heterogeneity on multiphase flow of CO, and brine. Energy Procedia 4 (2011) 4516—4523.



Direct Measurement of Capillary

Heterogeneity

sl
an

~apillary pressure, Pc (kPa)

10
35 ml/min 25 ml/min /min
5 ‘ =
[ |
0 |

0 02 04 06 08 1
Water saturation, Sw

R. Pini, S.C. R. Krevor, and S. M. Benson, 2012. Capillary pressure and heterogeneity for the CO,/water system
in sandstone rocks at reservoir conditions, Advances in Water Resources 38 (2012) 48-59.



Local Capillary Heterogeneity Leads to

Increased Trapping
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California (201 vs 179 Million BTU)
Wyoming (949 vs. 471 Million BTU)
Illinois (300 vs. 215 Million BTU)
Washington State (298 vs. 206 Million BTU)




X-Ray microtomography showing droplets
of CO, in the rock (ALS, LBNL)

Image of Rock with CO,
‘Micro-tomography Beamline

. p—

" KWq’rer

Mineral
grain

Microtomography from Tomutsa, LBNL
<€ 2 mm

36 Resolution ~ 5 um




Critical Issues for CCS

o Gain practical experience with power generation with CO,
capture and storage

O Reliability and operating costs
1 Lower the cost of capture by 50% or more

O Current technology estimated to cost 3-6 cents per kWh
0 Increase confidence in storage safety and security

O CO, retention and groundwater impacts

O Induced seismicity?
1 Sustain R&D

O New capture technologies

O Storage security, site characterization, and monitoring

1 Favorable policy environment
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