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The Solar System 4.6 billion years ago
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How did we get here?
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Planets are born in disks of gas and dust

Edge-On Protoplanetary Disk - Orion Nebula
Hubble Space Telescope - Wide Field Planetary Camera 2

PRC95-45¢ - ST Scl OPO - November 20, 1995 - M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Protoplanetary Disks HST - WFPC2
Orion Nebula

PRC95-45b - ST Scl OPO - November 20, 1995
M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA




Solar System formation
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Solar System formation
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Solar System formation

'Molecular
Cloud

Protoplanetary Disk

Asteroids, KBOs, Oort cloud are
leftovers of planet formation,

contain dynamical and chemical
fossil record of earliest stages of
solar system history
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Molecular
Cloud

Protoplanetary Disk

Solar System formation

Asteroids, KBOs, Oort cloud are
leftovers of planet formation,
contain dynamical and chemical

fossil record of earliest stages of
solar system history

How can we study
them?
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Meteorites (Rocks from Space!)
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Ensisheim meteorite, France, November 7, 1492



New York, October 9, 1992



Where are they found?

* All over the Earth, but
deserts best due to long
lifetimes against
weathering




Where are they from?

Asteroids!

Pribram

Jupiter




Recorders of first few million years (Ma

4,567.320.2 million years old
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Formed in <2 Ma Formed in ~2-4 Ma




O |sotopes |n Solar System
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 Planets "anomalous” -
— 180-poor relative to bulk Sun

* This signature intermediate
between Solar and an outer
solar system 1°0-poor water
composition, perhaps recorded
by “COS” - cosmic symplectite
in Acfer 094 meteorite

— Photochemical self-shielding
in disk or parental cloud?



Meteoritic Organic Matter i

21000
19000

* Up to 2% of chondrites

— Most is acid-insoluble,
macromolecular (IOM)

— Also wide suite of soluble
organic molecules (amino —
acids, carboxylic acids, etc)

— Isotopic anomalies suggest |
interstellar/outer solar system o "3?%
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Presolar Stardust Ig the Solar System
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Stardust
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 |sotopic ratios In
grains extremely
unusual and distinct
from ranges found in
solar system
material

« Too large to explain
by physical/chemical
processes
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How do we
know?
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Pristine nature of presolar grains makes
them useful probes of:

— Cosmology

— Stellar nucleosynthesis

— Stellar evolution and mixing

— Galactic chemical evolution

— Dust formation in stellar environments

— Dust processing in the interstellar
medium

— Sources of material for Solar System

— Early Solar System processes (disk and
planetesimal)



Presolar grain abundances

(ppm)

Davidson et al 2014
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Interplanetary Dust Particles (IDPs)
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* Very tiny meteorites
collected in stratosphere
by aircraft

* 1-60 umin size
« Asteroidal and cometary

sources (based on
inferred entry velocities)




Cometary IDPs

0O O * Anhydrous

g ® » C-rich (up to 50%)

 Ultra-fine-grained,
unequilibrated

» Mix of crystalline and
amorphous silicates

Enstatite (MgSiO,) whisker

“GEMS” (Glass with Embedded
Metals & Sulfides; J. Bradley)




Cometary IDPs

IDPs (this and previous study)

High presolar silicate abundance

eBalmoral1 ROIs
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Antarctic Micrometeorites (AMMs)
 10s to 100s um

— Collected by filtering snow- or ice-melt

— Fraction is anhydrous and porous

Subset are very C-rich

— Ultracarbonaceous (UC) AMMS (Duprat et al, 2010)

2em - Noguchi et al. 2014



Ultracarbonaceous Micrometeorites

Some very D-rich

(Duprat et al. 2010,
Dartrois et al.
(2013,2018), Dobrica
et al. (2012), Yabuta
et al. (2018)

Contain GEMS

Some contain
very N-rich OM
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Ultracarbonaceous Micrometeorites
Proposed
origin in
comets/KBOs
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Comet Wild-2 samples

« STARDUST mission
returned solid samples
from JFC Wild-2

« Collected in silica aerogel

 Bear similarities to both

primitive meteorites and
IDPs

— Fine-grained crystalline
and amorphous silicates

— Organic matter

— CAls/chondrule
fragments

SSTARDUST

NASA's COMET SAMPLE RETURN MISSION
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A cometary building block in a primitive asteroidal
meteorite

Larry R. Nittler ™, Rhonda M. Stroud?, Josep M. Trigo-Rodriguez®#, Bradley T. De Gregorio?,
Conel M. O'D. Alexander’, Jemma Davidson'®, Carles E. Moyano-Cambero®* and
Safoura Tanbakouei©3*

Meteorites originating from primitive C-type asteroids are composed of materials from the Sun’s protoplanetary disk, includ-
ing up to a few per cent organic carbon. In contrast, some interplanetary dust particles and micrometeorites have much higher
carbon contents, up to >90%, and are thought to originate from icy outer Solar System bodies and comets. Here we report an
approximately 100-pm-diameter very carbon-rich clast, with highly primitive characteristics, in the matrix of a CR2 chondrite,
LaPaz Icefield 02342. The clast may represent a cometary building block, largely unsampled in meteorite collections, that was
captured by a C-type asteroid during the early stages of planet formation. The existence of this cometary microxenolith sup-
ports the idea of a radially inward transport of materials from the outer protoplanetary disk into the CR chondrite reservoir
during the formation of planetesimals. Moreover, the H-isotopic composition of the clast is suggestive of a temporal evolution
of organic isotopic compositions in the comet-forming region of the disk.




LaPaz Icefield (LAP) 02342

* 42 g Antarctic CR chondrite

Initial work identified
interesting features and
heterogeneous aqueous

alteration (Trigo-Rodriguez et al. , g
LPSC 2013)




- C-rich clast

— Noticed unusual C-rich region

of thin section; targeted for
additional analysis

N
=7
fﬁl
ot
~
o
v
-t
"2
| . 3
-
i
1
!
e |
[ A . 3
e ek 5
LB o
{
v
5\
\
1

C X-ray map




>70% C by
drea

Na, S rich




-rich Clast




Secondary lon Mass

Spectrometry (SIMS) Methods

— Major/minor element :
iso’gope ratios (>100nm) %?aannsnrlnnigsion

Electron

Microscopy

—Morphology/
mineralogy/
microstructure (<1A)

X-ray Absorption Near-Edge
Spectroscopy (Synchrotron-
based transmission X-ray

microscopy provides information
about chemical bonding

NION UltraSTEM 200-X
Naval Research Lab




Presolar Grains

IDPs
P to1.5%)
¢ Previous presolar grains ¢ (up to 1.5%)
@ LAP 02342 :

C Chondrites

~O=-—0— CO3

-0~ Acfer 094 (C-ungrouped)

LAP 02342

® Matrix/SRR C-rich Clast

0 100 200 300 400 500 600
OO0 Presolar grain abundance (ppm)

Matrix presolar silicate abundance at low end for CR chondrites

C-rich Clast abundance much higher, comparable to the most
primitive meteorites and IDPs



Related to Acfer 094 COS?
— Quter-solar system water?

18O-poor material

200 -

Acfer 094 COS ¢

CRC

/ ;Planets, asteroids ]
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100 -50 0 50 100 150 200
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18O-poor material

« SEM-EDS indicates
grains rich in Na, S,0
— Na sulfate(!)

— Acfer 094 COS is
magnetite-Fe sulfide




Organic Matter

* C-rich clast largely close
to terrestrial but with
some localized
enrichments (“hotspots”)
of D and °N
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LAP CRC |

OrganiC Matter

UCAMMs

* C-rich clast largely close
to terrestrial but with
some localized
enrichments (“hotspots™)
of D and °N




C-XANES O e

* Details of how material
absorbs X-rays reflects
chemical bonding

— Matrix C has typical CR IOM
spectrum

— Clast shows lower abundances
of O-bearing functional groups

Matrix IOM

Clast C
] interior

Optical Density (arbitrary units)

275 280 285 290 295 300 305
eV



STEM: Matrix

oD~9,000

+ Silicates, glass, sulfides, carbonates
* No sulfates
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Extremely fine-grained and high porosity
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GEMS (Glass with Embedded Metal and Sulfides)

GEMS in IDP

200 nm

OoM
Altered GEMS

/

Unequil.
(Fe,Ni)S

e Common in IDPs,
ultracarbonaceous
micrometeorites

« Extremely rare/absent in
chondrites



« Some early signs of
agueous alteration
observed in some
GEMS




C-rich Clast

: * Distinct from other matrix materials
S — >50 wt% C, highly porous

— OM isotopically and chemically distinct from matrix
OM

— Higher abundance of presolar silicate grains

— 160-poor Na-rich sulfates
— GEMS

* Accreted onto a CR parent body as distinct object

* Looks a lot like UCAMMS, thought to be cometary in origin, but
present in an asteroid!



Origin of C-rich Clast




Origin of C-rich Clast




Origin of C-rich Clast




Origin of C-rich Clast

-

: AtS "»

to form sulf
* Presolar gralns/ GI MS
abundant carbon

...



Origin of C-rich Clast

-

: AtS "»

to form sulf
* Presolar gralns/ GI MS
abundant carbon

...



Implications

* Presence of cometary clast in a C chondrite indicates
inward transport of C-rich icy dust during time of chondrite
accretion

— Qutward transport of inner SS material to comet accretion
region already well established from STARDUST results

* Preservation of chemically fragile materials (e.g., sulfates)
with record of early solar system ices!

— Such materials unlikely to survive atmospheric entry and/or
extraction from Antarctic snow/ice in IDPs or UCAMMSs

* Need dedicated searches for similar materials in other C
chondrites (and material returned from asteroids Bennu

and Ryugu by OSIRIS-REx and Hayabusa?2!) THAN KS'



