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Life Found at Amazing Extremes
“Extremophiles”
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hydrothermal vent
(7.5 km, 122°C)

Max growth T ≈ 122 °C?

Mariana Trench (11 km, 2°C)
Max growth P ≈ 1.1 kbar?

atm ≈ bar = 0.1 MPa; 10 m/bar depth/pressure
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Why Study Life Under Extremes?

Origin of life?

Extraterrestrial
life?

Climate change?



Why Study “Death” Under Extremes?
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Pascalization (6-8 kbar)
Max survival P < 8 kbar?

Pasteurization (<100 °C)
Max survival T < 100 °C?



What are maximum PTX that proteins can function at?
Focus on material properties

(Huang, Tran, Rodgers, Bartlett, & Ichiye, Condensed Matter Physics 2016)

Dihydrofolate reductase (PDB)
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For Organisms to Live at Extremes,
Their Macromolecules Must Work at Extreme

Escherichia coli (Goodsell)

Biologists

to

Chemists &
Physicists

Computational 
methods can 
provide link



What Makes Enzymes Work:
Activity: Stability + Flexibility

Ichiye, Phys. Biol. (2016) 13, 063001; Sem. Cell Dev. Biol. (2018) 84, 138
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• Activity needs stability and flexibility
• Both are functions of P & T
• Our focus on material properties of protein

Activity

?
P

T

Stability
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Pressure Effects on Proteins
Gross & Jaenicke, Eur. J. Biochem,. 1994, 221, 617

• Compresses proteins
Ø (Decreases flexibility???)

• Unfolds proteins (> 2 kbar)
Ø (Really increases flexibility???)

• Simplistically, seem like opposing effects?
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Piezophile

(hi P)

Mesophile

Growth Pressure PG 
Huang et al., Cond. Mat. Phys (2016)

Ichiye Phys. Biol. (2016) 13, 063001

SANS confirms low P unfolding of 
MpDHFR; Penhallurick, Marujo-
Teixeira & T. Ichiye, unpublished

Similar Activity (Stability & Flexibility) at “Corresponding States” TG PG

β-amylase, Feller, Scientifica (2013) 512840

Growth Temperature TG 
Jaenicke, EJB (1991) 202,715;

Somero, Ann Rev Physiol (1995) 75,43)

Question I:
How do Enzymes from Extremophiles Adapt to P-T?

Psychrophile Mesophile Thermophile

(cold)           (normal)         (hot)

DHFR, Ohmae et al., BBA (2012) 1824, 511



Dihydrofolate Reductase (DHFR)
E. coli (Ec) (PDB: 1RX2) Mesophile: GTP=310 K,1 bar

Moritella profunda (Mp) (PDB: 2ZZA) Psychropiezophile: GTP=279 K, 220 bar
GTP = growth temperature and pressure
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Molecular Dynamics Computer Simulations of
Enzymes from Extremophiles at Extremes of P-T

No obvious differences 
in xtal structure



MpDHFR:
TG = 279 K,

PG = 220 bar

10 ns average
(Collective)

10 ps average
(Atomic)

Solid – 1 bar
Dashed – 220 bar

Average RMS Atomic Fluctuations: A Measure of Flexibility
Huang, Rodgers, & Ichiye, JCC (2017) 48, 1174

Collective motions show differences:
• larger for piezophile at given T (more flexible)
• larger at higher P (come back to this!)
➢ same at GTP of each: corresponding state flexibility?
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EcDHFR:
TG = 310 K
PG = 1 bar



• Determine atomic vs. collective motions by QHAEL

• Quasi-harmonic frequencies vary only with V, so as material expands or 
contracts with P or T, frequencies change due to change in available space.

• Our analysis shows force constant k T >> Tg varies with P & T as

! ", $ = !& exp − 2,-Δ$3 (1 + 34,&Δ") 6/8

thermal expansivity aP is constant; compressibility kT = 34,& 9
9:

• Above Tg, aP > 0 atomic + collective. Below Tg, aP = 0 only atomic 11

How Do You Measure Material Properties of a Protein?
Quasi-harmonic Approximation of Energy Landscape (QHAEL)

Rodgers, Hemley, & Ichiye, JCP (2017) 147, 125103

collective

atomic



• P decreases width of local 
potential well (atomic motions)

• P increases transitions above Tg
(collective motions)

• Consistent with previous results 
on nsec+plus RMSF

QHAEL Analysis of P-T Effects on DHFR
(Huang, Rodgers, Hemley, & Ichiye, JCPB 2018, 21, 5527)
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• T increases width of local 
potential well (atomic motions)

• T increases transitions above Tg
(collective motions)

← k  → → k  ←

!" > 0 %& > 0

What leads to lower transitions at high P?



• Collective motions increase at 
higher T by surmounting barriers 
to break H-bonds
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Physical Origin of T-P Effects on Collective Motions
(Huang, Rodgers, Hemley, & Ichiye, Internatl J Molec Sci (2019) 20, 1452)

EcDHFR at 1 atm:
279 K (/) & 310 K (\)

MpDHFR at 279 K:
1 (/) & 220 atm (\)

• Collective motions increase at 
higher P because most H-bonds 
weakened, which lowers barriers 

Hydrogen Bonds!



Pressure Adaptation ?
(Huang, Rodgers, Hemley, & Ichiye, High Pressure Research (2019) 39, 225)
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EcDHFR

113-27 H-bond
τHB = 48 ps,
77% occupied
at 279 K, 220 atm

MpDHFR

Exp: D27E EcDHFR is 
piezotolerant

Ohmae et al., Biochim Biophys
Acta 2013, 1834, 2782 

113-27 H-bond
τHB = ~25 ns,
100% occupied
at 279 K, 220 atm

The biology:
1 carbon makes 
difference in 
pressure sensitivity!



Adaptations for P-T Effects on Hydrogen Bonds
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• Hydrogen bonds!

Fall due to overall weaker H-bonds 
(less stable), maybe for cold

Rise due to weak 113-27 H-bond
(less correlated)
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Question II
Can “Piezolytes” Adapt Cellular Environment?

• Urea is denaturant

• TMAO is stabilizer

• 2 urea : 1 TMAO 
cancel

• How does TMAO 
counteract urea 
at 1 atm?

• How does TMAO 
act as piezolyte
at higher P?

1:3

Sharks, rays, etc.
Yancey’s group

(300 bar)



Molecular Dynamics Computer Simulations:
Water Diffusion & Hydrogen Bonds at 0.5 M vs P

Teng & Ichiye, to be submitted

17

Diffusion of water

urea-water
H-bd lifetime

TMAO-water
H-bd lifetime

Pure water
Urea-water
3:1 urea-TMAO-water
Shark ratio urea-TMAO-water
TMAO-water

Water-water
H-bd lifetime

• Shark ratio water diffusion independent of P
• TMAO slows down water due to strong H-bond

homeostasis



Denaturing/stabilizing effects determined by inverse H-bd lifetimes
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Dynamic Theory of Osmolyte Effects
• Hydrogen bonding propensity of cosolute to protein

• Hydrogen bonding propensity of water (to unfolding protein)

W = "
"# [free Hbd of solute in soln] − "

"# [free Hbd of water molecule in H2O] 
W > 0	binds(denaturing) 
W < 0	binds	to	water	instead	so	"excluded"	(stabilizing) 

 
 
 
Y = ?

?@ [free Hbd of water in soln]- ??@ [free Hbd of water molecule in H2O] 
Y > 0	enhanced	(denaturing) 
Y < 0	reduced	(stabilizing) 

 
 
 

W = "
"# [free Hbd of solute in soln] − "

"# [free Hbd of water molecule in H2O] 
W > 0	binds(denaturing) 
W < 0	binds	to	water	instead	so	"excluded"	(stabilizing) 

 
 
 
Y = ?

?@ [free Hbd of water in soln]- ??@ [free Hbd of water molecule in H2O] 
Y > 0	enhanced	(denaturing) 
Y < 0	reduced	(stabilizing) 

 
 
 



TMAO Effects on Urea Denaturation at High P
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more TMAO because P breaks 
intraprotein H-bonds

denaturing

stabilizing

TMAO replaces urea TMAO reduces hydration

more TMAO because P breaks water-
water H-bonds

TMAO compensates for P effects on protein and on water

H-bond Propensity of Osmolyte H-bond Propensity of Water

Pure water
Urea-water
3:1 ratio
Shark ratio
TMAO-water
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The Anomalous Diffusion of Water under Pressure
Teng, Liu, Ichiye, to be submitted

TIP4P-Ew SSMP

Max P where life has been found

(Exp*)

(Exp*)

*Harris & Woolf, JCS Faraday I, 1980, 76, 377

Life so far where coordination number of water < 5

(bar)



Conclusions
Question I: Adaptations in extremophile enzymes

• Material properties of enzyme are important

• Unlike T, high P has opposing effects
- compresses local potential energy well, ↓ local motion
- usually weakens H-bonds, ↑ collective motion
- increases correlation, may strengthen H-bonds, allostery?

Question II: How piezolytes work
• Model based on H-bond lifetimes explains effects of osmolytes

on proteins
• Sharks? Counteracting effects of TMAO - decreases H-bond 

capacity of water
21
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