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Where are they found?

e All over the Earth, but

deserts best due to long
lifetimes against
weathering




Where are they from?

Asteroids!

Jupiter
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Recorders of first few million years (Ma)

4,567.320.2 million years old
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Formed in <2 Ma Formed in ~2-4 Ma




Presolar Stardust In the Solar System
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 |sotopic ratios in
grains extremely
unusual and distinct
from solar system
ranges

e Too large to explain
by physical/chemical
processes
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SIC C-rich
Stardust Stars
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Presolar grains are small
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Electron
Microscopy

—Morphology/
mineralogy/
microstructure
(>1nm)

Secondary lon
Mass
Spectrometry
(SIMS)

— Major/minor

element isotope
ratios (>100nm)

Resonance
lonization Mass
Spectrometry
(RIMS)

— Trace-element
Isotopes (>1um)

NION Ultra-STEM -
- Stanning Transmission Electron Microscope
Naval Research Lab




Pristine nature of presolar grains makes them
useful probes of:

—Cosmology

— Stellar nucleosynthesis

— Stellar evolution and mixing

— Galactic chemical evolution

—Dust formation In stellar environments
—Dust processing In the interstellar medium
— Sources of material for Solar System
—Early Solar System processes



Sources of Presolar Stardust Grains
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stars

massive stars)



Frequency

i SiC
Stardust

1 10

AGB origin of most presolar SIC

C-rich AGB _

Stars

100 1000
12C/13C

10000

grains

a) AFGL 2368

8 10 12
wavelength (um)




Frequency

AGB origin of most presolar SIC
grains

i SiC
Stardust

C-rich AGB _
Stars

Comparison with astronomical

observations indicates AGB star origins, k&
but grains can tell us much more ’




Heavy element nucleosynthesis

 Use RIMS to
measure heavy
trace element
Isotopes which are
not possible
astronomically (Ba,
Mo, Zr, Sr, ...)

e Can test theory with
very high precision
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 Comparison with both observations and models indicate
vast majority of grains formed in AGB stars

— But what about supernovae?



Supernovae Enormous explosions of stars!

Release ~10%° joules energy

Type |l
Type la
.
SN 1987A before ‘ - |
and after o
| | Explosion of white dwarf

Explosion of massive (>10Mg,,) probably) - produce Fe-peak
stars — produce most elements elements

from O — Fe



Supernova Dust

 How much dust and what types produced by In

supernovae hotly debated in astronomical
community

ALMA Band 9, 450;:m

ALMA detection
of cold dust In
SN 1987A
(Indebetouw et
al. 2014)

HST Ho (2011)
shocked ring




AGB Grains Presolar Supernova DUSt
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1-20% of presolar oxide, silicate, SIC, graphite stardust is

from Type Il supernovae!
yP P How do we know?



Nittler et al. 1996

Presolar Supernova Dust
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Presolar Supernova Dust

Nittler et al. 1996
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“Ti #Ca
o9 year t,, ; made in Supernovae

Grain formed with live 44Ti
INn a SUPERNOVA!
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Presolar Supernova Dust

Nittler et al. 1996
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e Grain formed with live #4Ti

iIn a SUPERNOVA!
e Other isotopes also point to SN
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Type Il SN zones
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Type Il SN zones
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Supernova Mixing
Explosive burning: 0.5%

Can reproduce grain
compositions by mixing zones | RRSREIUIIEINEEE
from nucleosynthesis C burning: 0.1%
calculations He burning: 1%

H burning: 98%

Grain Model
e KH2
m UOC-S3

Hibonite (CaAl,,0,,) and

Spinel (MgAlL,O,)

Ratio/Solar

Nittler et al. ApJ 2008



Supernova Mixing
Explosive burning: 0.5%

Can reproduce grain
compositions by mixing zones | RRSREIUIIEINEEE
from nucleosynthesis C burning: 0.1%
calculations He burning: 1%

But is SN mixing reasonable?

H burning: 98%

Grain Model
e KH2
m UOC-S3

Hibonite (CaAl,,0,,) and

Spinel (MgAlL,O,)

Ratio/Solar

Nittler et al. ApJ 2008



Su pernova MixXI Nng X-ray observations of

Cassiopeia-A SN

remnant

Hi: 7%
O+MedMg: 3

time: 9005 s g

3-color |

Computer
simulations of SN
mixing




Cassiopeia-A SN

Su pernova MixXI Nng X-ray observations of

remnant

Computer e B BN Observations and theory
rs];ri?(iti]lgtlons of SN JEimdt SN oo ~an't (yet) probe same
spatial scale as grains



SN nucleosynthesis

e SN and AGB SIC have
distinct trace-element
Isotopes (measured by
RIMS)

— AGB (Mainstream) s-
process

— SN: “neutron-burst”
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SN nucleosynthesis

e SN and AGB SIC have
distinct trace-element
Isotopes (measured by
RIMS)

— AGB (Mainstream) s-
process

— SN: “neutron-burst”
— Can match to SN models

1
1055

Pignatari et al. 2018

Isotopic mass number



SN nucleosynthesis: *>N-problem

e SN-SIC grains rich in °N
(low *N/*>N); not easily
reproduced by SN
nucleosynthesis
calculations



SN nucleosynthesis: *>N-problem

e SN-SIC grains rich in °N
(low *N/*>N); not easily
reproduced by SN
nucleosynthesis - D15
calculations

e Solved with 3-D models?
(Schulte et al., 2021)

(b) 158 “N /15N in X-Y plane



Timing of SN grain formation?

e SN SiC grains have #Ti
enrichments from 2 places:

— Inner zone where synthesized
as 9V (half-life=330 days)

— He-burning zone (made by n
capture); also source of C in
grains

o 49T|-28Sj correlation indicates
grain formation after 4°V
decay

— Indicates SIC grains formed >2
yr after explosion

1000 2000 3000
Time (days)

Liu et al., Science Advances, 2018



Presolar grain microstructures

e Transmission electron microscopy can reveal nm-scale
crystal structures/compositions

— Reflect physical/conditions of grain formation in stellar
environments

— Requires state-of-the-art focused ion beam methods to extract
sections for TEM e

TEM

FIB




Supernova Grain Formation

Radiation
damaged rim
on TiC sub-
grain —
condensed 1st

r

TiC core in SN
graphite

/ 50 nm
10-12 nm rim

« Grains record very complicated
growth history

 Changing chemical and physical
conditions (temperature, density,
composition)




Supernova Grain Formation

(a) TENI n-llcrograph L ;__'_ .................

......................................

.......................................

..................................

« One SN graphite with )
nanocrystalline core, mantled by o7 T
graphite shells (Groopman, Nittler et al, "
2014) S

— Structure/chemistry indicates changing
chemical/physical conditions during

grain growth C-edge X-ray Absorption
Spectra



Supernova Grain Formation

Titanium “Ti/aTi (rel. solar)
- - - £
-
Aum
. Grains_ record very | Isotope measurements of
complicated growth history sub-grains now possible
« Changing chemical and (Verdier et al. 2019)

physical conditions
(temperature, density,
composition)



Other types of SNe?

Do we have presolar grains from supernovae
besides Type II?

—Let’s take a side trip to bulk meteorites ....



Bulk iIsotope anomalies In Solar System

l O CC achondrites

_' @ CC chondrites

| © NC achondrites

1 @ NC chondrites

i I Earth, Moon, Mars

{ HED

Kruijer et al. (2019);
data from lots of people

. N A
Mesosiderites

| _ .
Angrites O CCirons

Pallgsites (MG) O NC irons
; v ; v } v ; v ; v r ' 15 ’ v ; v r ' r
-1.0 -0.5 0 0.5 1.0 1.5 2.0 0 1 2 3
94
e>Cr €"Mo

e ¢is 104 deviation from standard

—e.g., €*Cr=1 means 1 parts in 10,000 more
>4Cr than Earth (relative to other Cr isotopes)



Bulk iIsotope anomalies in Solar System

l O CC achondrites

_' @ CC chondrites

| © NC achondrites

1 @ NC chondrites

i I Earth, Moon, Mars

{ HED

Kruijer et al. (2019);
data from lots of people

. N A
Mesosiderites

| _ .
Angfites O CCirons
Pallgsites (MG) O NC irons
L] . L] . : . L] . L] . L] . —1 _5 L] . L] . L] . L]
-1.0 -0.5 0 0.5 1.0 1.5 2.0 0 1 2 3
94
e>Cr €"Mo

 Two Solar System reservoirs: CC (outer) and NC (inner)
with different mix of nucleosynthetic precursors



Bulk iIsotope anomalies in Solar System

e Lots of models

 Most involve spatio-
temporal changes In
distribution of presolar
stardust grains from
distinct stellar sources

e Can we find presolar
grain carriers of bulk
anomalies?

--.‘_\a Early infall (f = 0 My[}

d Gap formation (f~2-5Myr) ;
e [ L ﬂy; _____into inner Solar System

-~ ¢ After infall (f< 1 Myr)

Outward transport of CAls
- and initial disk formation by outflow

J.__F'I'I e et

Enriched in nuclides from neutron-rich stellar environments
Depleted in nuclides from neutron-rich stellar environments

™, b Late infall

Mixing blocked
by proto-Jupiter

|_Nc_OA~CAC
Implantation of CC bodies

—
‘:--- -~

0.9 0.4
| e rgYoYo it |
f -‘-.,._._

Kruijer et al.



S4Cr Carrier

e YES!

— Dauphas et al. (2010) and Qin et al.
(2011) found highly >*Cr-rich sub-um
oxide grains in acid-resistant residues
of Orguell CI chondrite

— S4Cr/>?Cr up to 3.5 x Solar

— But, ion probe beam size much larger
than grains —isotope dilution makes
measured ratios lower limits =

* Makes stellar origin ambiguous
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>4Cr-rich grains b

e 2017: obtained new
high-resolution ion

source, revisited >*Cr
problem

 |dentified additional >*Cr-
rich grains, without
dilution problems!
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Origin(s) of >4Cr-rich Grains?
e Extreme >*Cr enrichment requires supernova source

« Type Il SN?

— Make °4Cr, °9Ti by
neutron capture
during core and
shell He- and C-
burning

—Ruled out by poor
match to datal!




Origin(s) of >4Cr-rich Grains?

e Extreme >*Cr enrichment requires supernova source

e High-density Type la?

 If WD material at particularly high
density, low-entropy conditions lead
to very n-rich nucleosynthesis,
possible source of rare nuclel like
48Ca, °°Ti, >*Cr (e.g., Meyer et al.
1996; Woosley 1997; Yu & Meyer
2013)

e Not known If exist!




Origin(s) of >4Cr-rich Grains?

e Extreme >*Cr enrichment requires supernova source

e Electron-capture supernova?

— Possible end-stage of life of stars of ~7-10
solar masses (following “Super-AGB”
phase, which may produce lots of s-
process, short-lived radioactivities [Trigo-
Rodriguez + 2009])

— Not known If exist!




Electron Capture Supernovae (ECSN)

* |f ONeMg core of super-AGB star reaches Chandrasekhar
mass, electron captures on ?°Ne may lead to
thermonuclear runaway and stellar explosion. Ejecta
characterized by very neutron-rich material.

Two proposed types

c-ECSN

* Core collapses to form neutron
star, shock wave ejects newly
formed material

 Nomoto et al. (1984), Doherty et al
(2017)

t-ECSN

 Thermonuclear runaway leads
to explosion before core can
collapse
e Jones et al. (2016, 2018)




Electron Capture Supernovae (ECSN)

* |f ONeMg core of super-AGB star reaches Chandrasekhar
mass, electron captures on ?°Ne may lead to
thermonuclear runaway and stellar explosion. Ejecta
characterized by very neutron-rich material.

Two proposed types

c-ECSN

* Core collapses to form neutron
star, shock wave ejects newly
formed material

 Nomoto et al. (1984), Doherty et al
(2017)

t-ECSN

 Thermonuclear runaway leads
to explosion before core can
collapse
e Jones et al. (2016, 2018)

Caveat: unknown if ECSN actually occur!




c-ECSN nucleosynthesis

. Eject ~10-2 M@ material, very n-rich ejecta

L T e -
o 7n SL Sr \Iu I"‘d sSn \= Ce Sm Lh Yb W I‘l Pb
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atomic number

Light r-process peak

production in c-ECSN
(Wanajo et al 2011)

70 80 90 100
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48Ca, °OTi, >*Cr production in c-ECSN
(Wanajo et al 2013)
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t-ECSN nucleosynthesis
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I Eject 0.1-1 M, material, very n-rich ejecta
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(Jones et al., A&A 2019)



t-ECSN nucleosynthesis

Y,

-« Eject 0.1-1 Mg, material, very n-rich ejecta,

48Ca, °Ti, >*Cr, *°Fe

ejecta
—e— Gl4aNKK

(Jones et al., A&A 2019)




t-ECSN nucleosynthesis

Y,

- » Eject 0.1-1 Mg material, very n-rich ejecta,
. » Also O, Mg, Si 48Ca, 50Tj, 54Cr, ©OFe

ejecta
—e— Gl4aNKK

t-ECSN =
*high-density
SNla “?
(Meyer 1996;
Woosley &
Weaver 1995)

(Jones et al., A&A 2019)




t-ECSN nucleosynthesis

« Excellent
match of
composition to
most extreme
>4Cr- and °UTi-
rich presolar
grain (Nittler et
al. 2018; Jones
et al. 2019)

tracer particles




ECSN and the Solar System?

* Neutron-rich nucleosynthesis may explain bulk isotope
anomalies

e Lifetime of S-AGB stars range from ~20-50 MY

— Overlaps with star-forming region lifetimes

— Plausible interaction with nascent Solar System (much less
likely for lower-mass AGB, SNIla, neutron star mergers etc)

— Self-pollution of Sun’s parental cloud?



T= 5Myr T= 20Myr T= 20Myr +§

« Advantage:

Nucleosynthetic site that best explains correlations
of light n-rich and r-process Mo, timescale ~works

 Disadvantages:

Don’t know if ECSN exist, modeling very uncertain,
need to find more presolar carriers

Inspired by SPACE model of M. Gounelle et al.



s Presolar stardust in

meteorites allows us to
probe stars in the laboratory!

— Take advantage of advanced
microanalytical technologies

e« Presolar supernova grains

provide important
astrophysical information
unobtainable any other way

— Nucleosynthesis, grain
formation, timescales ...



~» Presolar stardust in
. meteorites allows us to
probe stars in the laboratory!

— Take advantage of advanced
R microanalytical technologies
~« Presolar supernova grains
~ provide important
astrophysical information
unobtainable any other way

— Nucleosynthesis, grain
formation, timescales ...

THANK YOU!
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