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Overview

• The goal:  To gain insights into the complex process of gene regulation 
and make meaningful connections between biological data and 
mathematical models.

• The approach:  Starting from simple mathematical models of genetic 
control, we explore the joint effects of network topology and interaction 
rules

• Application #1:  We hypothesize that a dynamical instability in the 
gene network may be a causal mechanism contributing to the occurrence 
of some cancers. 

• Application #2:  These models may help to explain how the network 
structures observed in empirical data reflects tradeoffs between diversity 
of function and system robustness.



Why think about gene networks?

• The pattern of interactions between genes (i.e. 
network effects) can play a significant and 
complex role in gene regulation 

• The network approach helps us to identify 
groups of genes that are working in concert to 
produce undesirable outcomes



Network Science and Systems Biology

• Network methods are most useful when links represent real 
interactions and not merely correlations

• Network connections can tell us how information flows in a system

• Network centrality measured can be used to identify drivers of 
activity and develop optimized attack/intervention strategies

• Network community detection methods can be used to identify 
functional related groups of nodes

Neural NetworkMetabolic NetworkProtein Interaction 
Network



...to a complex web of 
interactions

Figure taken from 
http://rsif.royalsocietypublishing.org/content/5/Suppl_1/S85.full 

Gene i

Gene j

Interpreting link ij

From individual regulatory 
relationships between genes...

A Network Approach to Gene Regulation



Connecting Models with Data: 
Goals and Challenges

• Goal: Use mathematical models to understand the role of 
network structure in gene regulation and to make connections 
to empirical data

• Challenge #1: Identifying the network structure from data

• Challenge #2: Identifying the dynamical parameters of the 
model from data

• Challenge #3: Appropriately accounting for inference errors 
when developing intervention strategies



Building a simple model for gene 
regulation: Why Boolean?
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Motivation: Input/output regulatory relationships between 
genes are often observed to be strongly sigmoidal and well 
approximated by step functions.

Caution: When the expression levels of multiple inputs are 
varied, we often see more than two output expression levels



Modeling Genetic Control with Boolean Networks

• N Genes on or off

• Each gene has exactly K inputs, 
which are randomly chosen

• Discrete updates

• Evolves by a random update 
function at each node

• Focuses on stability in response to 
small perturbations

• Explores the effect of network 
topology on stability

• Also explores more biologically 
realistic Boolean update rules

Kauffman’s N-K model: Our work:

Citations to Kauffman’s original paper:

Dramatic increase in citations driven by advances in high throughput 
biological data collection and the growth of network science.

“Metabolic stability and epigenesis in randomly constructed genetic nets,” JTB 1969



Local update rules:  An example

A

B

C

current state
time t

State of 
gene C 
at t+1

Gene A Gene B

0 0 0

0 1 0

1 0 1

1 1 0 Node with 2 inputs

Random update rules: Output  column filled in randomly at the start of 
the simulation with bias (probability of 0), p, and fixed forever after.



Local Rules Lead to Global Patterns
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Illustrative examples (not from actual simulations)

Is the network stable or chaotic?

pattern in stable network pattern in chaotic network

original pattern

Flip the states of a few genes.  
Do we see the same pattern as before?



• Chaotic dynamics:  The system can 
exhibit what are termed “chaotic” 
dynamics in which the distance 
between initially close states grows 
in time until some saturation level is 
reached

• As the system is tuned by varying 
either K (number of inputs) or p 
(the update function bias), we see a 
second order phase transition in Y, 
the normalized average saturated 
Hamming distance.

• Kauffman hypothesized that cells 
exist at the critical point between 
stable and unstable regimes.
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Significance of the patterns

• The patterns of activity may define 
a cell’s character

• In single celled organisms this 
could correspond to different cell 
states: growing, dividing, starving, 
etc.

• In multicellular organisms these 
could correspond to different cell 
types.



Motivation for our work
• Early results for these systems relied on annealed networks and annealed 

truth tables (network connections and truth tables randomized at each time 
step) to find the transition between stability and instability. (Derrida & 
Pomeau, 1986;  Aldana & Cluzel, 2003)

• Since real networks are far from the idealized models studied previously, the 
aim of our initial work was to be able to handle almost any specified network 
topology for the case of random update functions.

• Our more recent work is focused on the joint effects of network topology 
and update rules and considers more biologically realistic gene interactions

• We also have extended our analysis to the case of non-synchronous update.
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Describing the Boolean Network Mathematically

• Network topology:

• Random update functions (a simple model of 
genetic control):

‣ Output column randomly filled in

‣ Bias p - probability of a 0 appearing in the 
output column

1 if link from 
0 otherwise           ij

j i
A

→"
= #
$



A starting point: Handling arbitrary network 
topologies and sensitivity distributions

• We consider a semi-annealed approximation in which the network is fixed 
and the output entries of the truth tables are randomized at every step, 
subject to a bias pi that depends on i.

• We perform numerical tests with frozen truth tables to test the 
applicability of semi-annealing

• Locally “asynchronous” requirement: we can handle any network structure 
in which pairs of nodes are rarely connected by multiple short paths of 
the same length (weaker version of locally tree-like)

Locally 
treelike:

Locally 
asynchronous:

Not locally 
asynchronous:

(for otherwise random update functions)
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Numerical tests
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Sensitivity-Degree correlations
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Nodes have sensitivity drawn from distribution centered around q0

y is the average saturated distance between two initially 
close states that have been evolved

qi = 2pi (1− pi )



An example of how network topology 
can affect stability:  Assortativity

Assortativity: highly connected nodes tend to connect preferentially 
to other highly connected nodes, tends to increase eigenvalue
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assortative 
network:
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Markers are reflect results from frozen truth tables. 
Arrows indicate the location of the analytically derived 
stability transition. Solid lines calculated by iterating 
the non-linear semi-annealed update equations.



The problem with random 
Boolean functions

• In reality, regulatory links can 
generally be classified as either 
activating (the input gene being on 
increases the probability that the 
target gene is on) or repressing 
(the input gene being on increases 
the probability that the target gene 
is off)

• Random Boolean functions do not 
reflect this biological feature.  

Inputs at t-1 Output

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Sample update function:



The threshold Boolean model

The state of node i at time t depends on the states of its 
inputs at t-1 in the following way:

- U is the unit step function
- wij is the weight of the link from node j to i
- ϑi is the threshold of node i
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Extending the semi-annealed approach to 
more biologically realistic update functions

• In approximating the random Boolean model, we focused on the yi(t) (the 
probability that the state of node i differs at time t in two initially close state 
vectors): 

y(t)≈Qy(t-1), where Qij= qi Aij

• Consider the more general scenario:

y(t)≈Ry(t-1)

where Rij represents the probability that node i changes its state given a change 
in node j’s state, considering all other inputs as random. 

• Constructing the appropriate matrix R whose largest eigenvalue determines the 
stability of the update functions of interest involves two important steps

- By iterating a set of self-consistency equations, we find the dynamical biases 
of the nodes which reflect the fraction of time each node spends in the 0 
state

- Starting from the update rule of interest, each node must is assigned an 
appropriate update rule ensemble for semi-annealing.



Some Results for Threshold Networks
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Network Construction:  Scale free out- 
and poisson in- degree dist. Weights drawn 
from N(±1,1/4). Correlated case: positive 
correlation between incoming weights and 
degree product (in×out) of nodes. Fixed 
thresholds 𝛳i from normal dist. with 𝜎𝛳.

Semi-annealing: At each time step, the 
thresholds are randomly drawn from a 
normal dist. with specified mean and 𝜎𝛳.

Results: Solid markers represent averages 
over 50 realizations of frozen truth tables. 
Open markers reflect a single realization. 
Arrows indicate the transition locations from 
our semi-annealed approximation.



Connecting with data: 

Stability and Cancer

• Data from tumor dissections show that nearby cells have vastly different 
gene expression profiles.  

• Could these fluctuations imply a breakdown of genetic control due to 
dynamical instability?

• What additional data do we need to answer these questions? 



Evidence for dynamical instability in cancer

Figure shows normalized gene expression for 15 hyper-variable genes in cancer from two 
independent colon cancer datasets. Normal samples are shown in green, cancer samples are 
shown in orange.  The anti-profile as the set of genes and a corresponding range of normal 
expression values for each gene (indicated by dotted lines).  The anti-profile score for each sample 
is the number of genes in the signature that are outside their defined range of expression. Blue 
circles highlight expression for one specific cancer sample.

Taken from: 

Bravo, Pihur, McCall, Irizarry, 
Leek, “Gene expression anti-
profiles as a basis for accurate 
universal cancer signatures,” 
BMC Bioinformatics (2012).

A possible analogy to Tolstoy’s famous opening to Anna Karenina?

All happy families are alike; each unhappy family is unhappy in its own way.

All healthy cells are alike; each unhealthy cell is unhealthy in its own way.



 Elucidating the network from data

ge
ne
s
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• Network:  Weighted links can be 
inferred from data by combining different 
types of data, e.g.:

✦ Sequence motif data to indicate the 
potential for a transcription factor to 
regulate a specific gene.

✦ Gene expression data to determine 
the weight and sign of the 
interactions.

• Network links are easier to infer than 
dynamical parameters

• Caveat: networks and dynamical 
parameters may be harder to infer in the 
presence of hypervariability.

Gene i

Gene j



Limitations of the attractor hypothesis

• The attractor hypothesis assumes that different cell types 
represent different attractors of a single underlying network.

• A more common view is to think of different cell types as 
having distinct regulatory networks with differences due to 
epigenetic changes.

• Using features from both views, we might imagine that 
epigenetic changes associated with a given cell type serve to 
enlarge the basin of attraction of a specific attractor of a 
pluripotent underlying network. From this perspective, the 
pluripotent network would not have to be stable, since it 
doesn’t correspond to a realized biological condition.



Modeling the Evolution of Gene Regulatory Networks
• Our modeling framework can be used to explore the evolution of gene regulatory networks

• Q: What kind of network structures optimize fitness?

• Q: Can we represent fitness as a tradeoff between functional diversity and system 
robustness?

• Connecting we data: if we assume this form of fitness, do the network structures evolved in 
our model reflect those in data?

• Preliminary work: Models of edge competition in directed networks provide a picture of 
how selection might shape the structure of gene networks over evolutionary time. Achlioptas Process 
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S Squires, K Sytwu, D Alcala, TM Antonsen, E Ott, and M Girvan, “Weakly explosive 
percolation in directed networks,” Physical Review E 87 (5), 052127 (2013). 



Summary
• Simple Boolean models of genetic control, starting with random 

Boolean models and progressing to the more realistic threshold 
Boolean models, can be used to gain insights into the effects of 
network structure in the process of gene regulation.    

• A major challenge is to connect the model predictions with real data 
in meaningful ways.

• Future directions:  This kind of modeling approach may also be useful 
for studying the evolution of gene regulatory networks.  
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