Why do black holes shine?

Chris Reynolds

Department of Astronomy,
University of Maryland College Park
USA

Example of a non-accreting disk!

$$\frac{GM}{R^2} = \frac{V^2}{R} \quad \Rightarrow \quad V = \sqrt{\frac{GM}{R}}$$

Angular momentum given by J = mVR

$$\therefore J = m\sqrt{\frac{GM}{R}}R = m\sqrt{GMR}$$

Matter must lose angular momentum to accrete!

Shakura & Sunyaev (1973)... dimensional analysis (kinematic) viscosity coefficient = $\alpha c_s h$

"I think you should be more explicit here in step two."

Ji, Burin, Schartman, Goodman (2006)

 r_1 =7.06cm, r_2 =20.30cm, h=27.86cm η =0.348, Γ =2.10, Re<2×10⁶ (now 2×10⁷ in liquid gallium)

Driving of turbulence

- What drives/sustains the turbulence?
- Hydrodynamic accretion disks seem to be stable and hence not turbulent
- Situation different for magnetized accretion disks
 - Weak magnetic field makes flow unstable (magneto-rotational instability; Balbus & Hawley 1991)
 - Instability grows quickly (orbital timescale), eventually transitioning to turbulence
 - Correlations within the turbulence transport angular momentum

Slide courtesy of D.Lathrop (UMd)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot [\rho \mathbf{v}] = 0, \tag{1}$$

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left[\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B} + \mathsf{P}^* \right] = 0, \tag{2}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left[(E + P^*) \mathbf{v} - \mathbf{B} (\mathbf{B} \cdot \mathbf{v}) \right] = 0, \tag{3}$$

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0, \tag{4}$$

where P* is a diagonal tensor with components $P^* = P + B^2/2$ (with P the gas pressure), E is the total energy density

$$E = \frac{P}{\gamma - 1} + \frac{1}{2}\rho v^2 + \frac{B^2}{2},\tag{5}$$

Stampede (Texas Advanced Computer Center)
6,400 Dell C8220 nodes (102,000 cores + 390,000 co-proc cores)
10 Pflops aggregate performance

DB: data.0000.vtk Cycle: 0 Use PLUTO code

Spherical polar grid 512 x 384 x 128 zones 200,000 cpu-hours

DB: data.0000.vtk Cycle: 0

DB: data.0000.vtk Cycle: 0

user: chris Tue Feb 3 15:14:40 2015

DB: data.0000.vtk Cycle: 0

user: chris Wed Feb 4 13:56:58 2015

Magnetic Pressure (midplane)

Density (midplane)

High resolution run using ATHENA: $n_r \times n_z \times n_\phi = 480 \times 128 \times 2048$ 32 zones/h at the fiducial radius
Use of orbital advection speeds up calculation by factor of 20 120,000 CPU hours on TeraGrid/Ranger
Sorathia, Reynolds, Stone, Beckwith (2012)

3/8/17 MASPG 26

Simulated accretion disk (Hogg and Reynolds 2016)

X-ray data of accreting supermassive black hole in MCG-5-23-16 (Zoghbi et al. 2014)

Cygnus X-1 (RXTE)

Belloni et al. (2010)

Uttley, McHardy & Vaughan (2005)

Cygnus X-1 (RXTE)

Uttley, McHardy & Vaughan (2005)

Stellar-mass black hole XTEJ1550-564; Rao et al. (2010)

Conclusions

- Need to overcome angular momentum in order for accretion to occur
 - Same problem exists in planet/star formation
- MHD turbulence paradigm seems firm
 - Large-scale computer simulations have been crucial tool for understanding implications of MRI
- Work underway to understand complex phenomenology of black holes
 - Basic properties of the turbulence
 - Role of other physics (radiation, plasma processes, relativity...)