2010 Image Gallery

The Division of Fluid Dynamics exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure.

Every year, the APS Division of Fluid Dynamics hosts a physical Gallery of Fluid Motion at its annual meeting -- a room where stunning graphics and videos from computational or experimental studies showing flow phenomena are displayed. The most outstanding entries are selected by a panel of referees for artistic content and honored for their originality and ability to convey information. The outstanding entries, selected by a panel of referees for artistic content, originality and ability to convey information, will be honored during the meeting, placed on display at the Annual APS Meeting in March of 2011, and will appear in the annual Gallery of Fluid Motion article in the September 2011 issue of the American Institute of Physics' journal, Physics of Fluids. Past winners are published in the journal Physics of Fluids. Physics of Fluids.

This year, in conjunction with the 63rd APS Division of Fluid Dynamics Annual Meeting, held from November 21-23, 2010 at the Long Beach Convention Center, located in downtown Long Beach, California, a subset of these images and videos are available on this page for viewing prior to the judging process, along with other images from the 2,025 presentations at the 63rd DFD meeting.
Gray arrow 2010 Video Gallery

Usage Permission
Reporters seeking permission to use these images or author contact information should email DFD Media Relations. Please leave "Gallery of Fluid Motion" in the subject line.

Bubble Burst in the Kitchen

kliakhandler10a-thumb

An example of interesting physics that may be created on a kitchen table using the simplest components, with unexpectedly beautiful results.


Starburst of a Magnetic Drop

chen-thumb10

Starburst-like patterns of magnetic drops subjected to an interaction of perpendicular and radial fields.


The Jet and the Drops

jung10-thumb

A series of drops from two sides bending a jet without merging.


Atomization of an Aircraft Engine Liquid Fuel Jet in a Crossflow

herrmann10-thumb

Visualization of the breakup of an aircraft engine turbulent liquid fuel jet injected into a compressed turbulent gaseous cross-stream.


Down the Drain

hertzberg10-thumb

Only one 'bathtub vortex' formed in a bucket with two holes in the bottom, viewed from the top with food dye.


Spreading of an Oil-in-Water Emulsion on the Surface of Pure Water

stone-thumb

An oil-in-water emulsion spreads on the surface of pure water


Wonders of the Water Strider

kliakhandler10b-thumb

Hairy legs and very small hairs on a strider's body (as for vast majority of insects and plants), allow striders to freely move and jump on the water surface.


Preferential Condensation

varanasi10-thumb

Condensation usually occurs randomly on textures of superhydrophobic surfaces, leading to highly-pinned droplets. Controlling nucleation with micro-scale hydrophobic-hydrophilic domains can overcome these limitations by allowing for preferential condensation.


Shape Instability of Sedimenting Viscous Drops

cubald10-thumb

This figure displays the shape instability of a viscous drop (silicone oil, viscosity: 50 cSt) falling in a liquid (isopropanol).


Multi-Scale Simulations and Visualizations of Arterial Flow

grinberg10-thumb

Multi-scale simulation of arterial flow. Red and blue shapes represent healthy and diseased red blood cells; contours represent streamwise ensemble average velocity, red = high and blue = low; dots represent plasma.


Unstable H<sub>2</sub>-N<sub>2</sub>O Explosion

bane10-thumb

Cellular structure of an unstable flame ignited in a mixture of hydrogen and nitrous oxide.


Flow Over a Cavity

kasten10-thumb

Visualization of the vortex skeleton of the flow over a cavity. The structures are extracted using extremal structures of the acceleration field as a feature identifier.


Formation of Zinc Nano-crystals in Turbulent Jets

garrick10-thumb

Contours of zinc nanocrystal formation rate in a turbulent reacting jet.


Flow of Air Bubbles in a Packed Bed

zenit10-thumb

When bubbles form with a packed bed of particles, these may acquire two different sizes depending on the flow rate.


Chaotic Mixing of Food Coloring in Water

shinbrot10-thumb

This snapshot shows chaotic stretching and folding that appears when an aliquot of food coloring is dropped into a thin pool of water.


Different Strokes for Different Folks

guasto-thumb

Evolution of the fluid flow induced by a single 8 micron diameter swimming Chlamydomonas cell as its flagella beat 53 times per second.


Capillary Containment of Oil

protiere10-thumb

A capillary raft and its destabilization into armored droplets produced by the uniform sprinkling of dense particles on a few mm thick oil layer (dyed in red for visualization) sitting on water. At the bottom of the container, a pile of armored droplets after several sinking events.


Vibration-Induced Gas-Liquid Interface Breakup

ohern10-thumb

Gas-liquid interfaces break up when subjected to vibrations within critical ranges of frequency and amplitude. This breakup mechanism was examined experimentally, producing dramatic disturbances at the gas-liquid free surface.


Liquid Chandeliers by Entrainment

mclaughlin10-thumb

Pictures of salt water vortex rings descending in fresh water.


Transitional Patterns in Cyclonic Flows

burin10-thumb

Fluid flows bound between rotating cylinders can produce a wealth of patterns as they transition between a laminar and turbulent state.


Propagating Hexane Flame

boettcher10-thumb

A flame, ignited by a glow plug at 650 degrees Celsius, is propagating in a gaseous mixture of hexane in air and developing instabilities.


Water Spray Behind a Rolling Tire

plocher10-thumb

The Water spray pattern behind a rolling tire begins as a sheet of water. The thinner parts of the sheet rupture, forming holes. The smallest droplets are found along the edges of these holes. Thicker parts of the sheet become arc shaped ligaments, which pinch off to produce the largest drops.


The Merging of Two Hydraulic Jumps

celestini10-thumb

The interaction of two hydraulic jumps creates a stable fluid arch supported by a thin liquid sheet.


Symmetry Breaking in the Wake Behind Two Rotating Cylinders

kumar10-thumb

The image represents symmetrical wake structure behind two uniformly rotating cylinders at Reynolds number of 200 and cylinder surface speed to free stream velocity ratio of 1.35.


Making Emulsions

zenit10-thumb

The process through which an emulsion is formed. An emulsion is a mixture of liquid drops suspended in another liquid.


Eruption of Magnetic Fluids

chen10b-thumb

Eruption of a magnetic drop immersed within a layer of oils and subjected to perpendicular magnetic field.


Paths of Falling Flexible Sheets

alben10-thumb

Flexible sheets are released from rest and fall downward. The paths (black lines) reflect the fluttering, flapping, and circling motions of the sheets.


Life of a Free Soap Film

krechetnikov10b-thumb

Sequence of images showing the evolution of a soap film uniformly released from a wire frame, which was heated by a high voltage microsecond impulse.


The Sandwich, Deconstructed

hertzberg10b-thumb

Air (yellow region) fingers into a mixture of vegetable oil, water and dye in a diverging Hele Shaw cell.